Cargando…
PremPLI: a machine learning model for predicting the effects of missense mutations on protein-ligand interactions
Resistance to small-molecule drugs is the main cause of the failure of therapeutic drugs in clinical practice. Missense mutations altering the binding of ligands to proteins are one of the critical mechanisms that result in genetic disease and drug resistance. Computational methods have made a lot o...
Autores principales: | Sun, Tingting, Chen, Yuting, Wen, Yuhao, Zhu, Zefeng, Li, Minghui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8604987/ https://www.ncbi.nlm.nih.gov/pubmed/34799678 http://dx.doi.org/10.1038/s42003-021-02826-3 |
Ejemplares similares
-
PremPRI: Predicting the Effects of Missense Mutations on Protein–RNA Interactions
por: Zhang, Ning, et al.
Publicado: (2020) -
PremPS: Predicting the impact of missense mutations on protein stability
por: Chen, Yuting, et al.
Publicado: (2020) -
PremPDI estimates and interprets the effects of missense mutations on protein-DNA interactions
por: Zhang, Ning, et al.
Publicado: (2018) -
Multi-PLI: interpretable multi‐task deep learning model for unifying protein–ligand interaction datasets
por: Hu, Fan, et al.
Publicado: (2021) -
Characterization and Modeling of Ply/Tool and Ply/Ply Slippage Phenomena of Unidirectional Polycarbonate CF Tapes
por: Kapshammer, Andreas, et al.
Publicado: (2023)