Cargando…

In-plane quasi-single-domain BaTiO(3) via interfacial symmetry engineering

The control of the in-plane domain evolution in ferroelectric thin films is not only critical to understanding ferroelectric phenomena but also to enabling functional device fabrication. However, in-plane polarized ferroelectric thin films typically exhibit complicated multi-domain states, not desir...

Descripción completa

Detalles Bibliográficos
Autores principales: Lee, J. W., Eom, K., Paudel, T. R., Wang, B., Lu, H., Huyan, H. X., Lindemann, S., Ryu, S., Lee, H., Kim, T. H., Yuan, Y., Zorn, J. A., Lei, S., Gao, W. P., Tybell, T., Gopalan, V., Pan, X. Q., Gruverman, A., Chen, L. Q., Tsymbal, E. Y., Eom, C. B.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8608839/
https://www.ncbi.nlm.nih.gov/pubmed/34811372
http://dx.doi.org/10.1038/s41467-021-26660-7
Descripción
Sumario:The control of the in-plane domain evolution in ferroelectric thin films is not only critical to understanding ferroelectric phenomena but also to enabling functional device fabrication. However, in-plane polarized ferroelectric thin films typically exhibit complicated multi-domain states, not desirable for optoelectronic device performance. Here we report a strategy combining interfacial symmetry engineering and anisotropic strain to design single-domain, in-plane polarized ferroelectric BaTiO(3) thin films. Theoretical calculations predict the key role of the BaTiO(3)/PrScO(3) [Formula: see text] substrate interfacial environment, where anisotropic strain, monoclinic distortions, and interfacial electrostatic potential stabilize a single-variant spontaneous polarization. A combination of scanning transmission electron microscopy, piezoresponse force microscopy, ferroelectric hysteresis loop measurements, and second harmonic generation measurements directly reveals the stabilization of the in-plane quasi-single-domain polarization state. This work offers design principles for engineering in-plane domains of ferroelectric oxide thin films, which is a prerequisite for high performance optoelectronic devices.