Cargando…
Very long O‐antigen chains of Salmonella Paratyphi A inhibit inflammasome activation and pyroptotic cell death
Salmonella Paratyphi A (SPtA) remains one of the leading causes of enteric (typhoid) fever. Yet, despite the recent increased rate of isolation from patients in Asia, our understanding of its pathogenesis is incomplete. Here we investigated inflammasome activation in human macrophages infected with...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8609438/ https://www.ncbi.nlm.nih.gov/pubmed/33355403 http://dx.doi.org/10.1111/cmi.13306 |
_version_ | 1784602926782611456 |
---|---|
author | Mylona, Elli Sanchez‐Garrido, Julia Hoang Thu, Trang Nguyen Dongol, Sabina Karkey, Abhilasha Baker, Stephen Shenoy, Avinash R. Frankel, Gad |
author_facet | Mylona, Elli Sanchez‐Garrido, Julia Hoang Thu, Trang Nguyen Dongol, Sabina Karkey, Abhilasha Baker, Stephen Shenoy, Avinash R. Frankel, Gad |
author_sort | Mylona, Elli |
collection | PubMed |
description | Salmonella Paratyphi A (SPtA) remains one of the leading causes of enteric (typhoid) fever. Yet, despite the recent increased rate of isolation from patients in Asia, our understanding of its pathogenesis is incomplete. Here we investigated inflammasome activation in human macrophages infected with SPtA. We found that SPtA induces GSDMD‐mediated pyroptosis via activation of caspase‐1, caspase‐4 and caspase‐8. Although we observed no cell death in the absence of a functional Salmonella pathogenicity island‐1 (SPI‐1) injectisome, HilA‐mediated overexpression of the SPI‐1 regulon enhances pyroptosis. SPtA expresses FepE, an LPS O‐antigen length regulator, which induces the production of very long O‐antigen chains. Using a ΔfepE mutant we established that the very long O‐antigen chains interfere with bacterial interactions with epithelial cells and impair inflammasome‐mediated macrophage cell death. Salmonella Typhimurium (STm) serovar has a lower FepE expression than SPtA, and triggers higher pyroptosis, conversely, increasing FepE expression in STm reduced pyroptosis. These results suggest that differential expression of FepE results in serovar‐specific inflammasome modulation, which mirrors the pro‐ and anti‐inflammatory strategies employed by STm and SPtA, respectively. Our studies point towards distinct mechanisms of virulence of SPtA, whereby it attenuates inflammasome‐mediated detection through the elaboration of very long LPS O‐polysaccharides. |
format | Online Article Text |
id | pubmed-8609438 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | John Wiley & Sons, Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-86094382021-11-29 Very long O‐antigen chains of Salmonella Paratyphi A inhibit inflammasome activation and pyroptotic cell death Mylona, Elli Sanchez‐Garrido, Julia Hoang Thu, Trang Nguyen Dongol, Sabina Karkey, Abhilasha Baker, Stephen Shenoy, Avinash R. Frankel, Gad Cell Microbiol Research Articles Salmonella Paratyphi A (SPtA) remains one of the leading causes of enteric (typhoid) fever. Yet, despite the recent increased rate of isolation from patients in Asia, our understanding of its pathogenesis is incomplete. Here we investigated inflammasome activation in human macrophages infected with SPtA. We found that SPtA induces GSDMD‐mediated pyroptosis via activation of caspase‐1, caspase‐4 and caspase‐8. Although we observed no cell death in the absence of a functional Salmonella pathogenicity island‐1 (SPI‐1) injectisome, HilA‐mediated overexpression of the SPI‐1 regulon enhances pyroptosis. SPtA expresses FepE, an LPS O‐antigen length regulator, which induces the production of very long O‐antigen chains. Using a ΔfepE mutant we established that the very long O‐antigen chains interfere with bacterial interactions with epithelial cells and impair inflammasome‐mediated macrophage cell death. Salmonella Typhimurium (STm) serovar has a lower FepE expression than SPtA, and triggers higher pyroptosis, conversely, increasing FepE expression in STm reduced pyroptosis. These results suggest that differential expression of FepE results in serovar‐specific inflammasome modulation, which mirrors the pro‐ and anti‐inflammatory strategies employed by STm and SPtA, respectively. Our studies point towards distinct mechanisms of virulence of SPtA, whereby it attenuates inflammasome‐mediated detection through the elaboration of very long LPS O‐polysaccharides. John Wiley & Sons, Inc. 2021-01-17 2021-05 /pmc/articles/PMC8609438/ /pubmed/33355403 http://dx.doi.org/10.1111/cmi.13306 Text en © 2020 The Authors. Cellular Microbiology published by John Wiley & Sons Ltd https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Articles Mylona, Elli Sanchez‐Garrido, Julia Hoang Thu, Trang Nguyen Dongol, Sabina Karkey, Abhilasha Baker, Stephen Shenoy, Avinash R. Frankel, Gad Very long O‐antigen chains of Salmonella Paratyphi A inhibit inflammasome activation and pyroptotic cell death |
title | Very long O‐antigen chains of Salmonella Paratyphi A inhibit inflammasome activation and pyroptotic cell death |
title_full | Very long O‐antigen chains of Salmonella Paratyphi A inhibit inflammasome activation and pyroptotic cell death |
title_fullStr | Very long O‐antigen chains of Salmonella Paratyphi A inhibit inflammasome activation and pyroptotic cell death |
title_full_unstemmed | Very long O‐antigen chains of Salmonella Paratyphi A inhibit inflammasome activation and pyroptotic cell death |
title_short | Very long O‐antigen chains of Salmonella Paratyphi A inhibit inflammasome activation and pyroptotic cell death |
title_sort | very long o‐antigen chains of salmonella paratyphi a inhibit inflammasome activation and pyroptotic cell death |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8609438/ https://www.ncbi.nlm.nih.gov/pubmed/33355403 http://dx.doi.org/10.1111/cmi.13306 |
work_keys_str_mv | AT mylonaelli verylongoantigenchainsofsalmonellaparatyphiainhibitinflammasomeactivationandpyroptoticcelldeath AT sanchezgarridojulia verylongoantigenchainsofsalmonellaparatyphiainhibitinflammasomeactivationandpyroptoticcelldeath AT hoangthutrangnguyen verylongoantigenchainsofsalmonellaparatyphiainhibitinflammasomeactivationandpyroptoticcelldeath AT dongolsabina verylongoantigenchainsofsalmonellaparatyphiainhibitinflammasomeactivationandpyroptoticcelldeath AT karkeyabhilasha verylongoantigenchainsofsalmonellaparatyphiainhibitinflammasomeactivationandpyroptoticcelldeath AT bakerstephen verylongoantigenchainsofsalmonellaparatyphiainhibitinflammasomeactivationandpyroptoticcelldeath AT shenoyavinashr verylongoantigenchainsofsalmonellaparatyphiainhibitinflammasomeactivationandpyroptoticcelldeath AT frankelgad verylongoantigenchainsofsalmonellaparatyphiainhibitinflammasomeactivationandpyroptoticcelldeath |