Cargando…

Rapid Analysis of ADP-Ribosylation Dynamics and Site-Specificity Using TLC-MALDI

[Image: see text] Poly(ADP-ribose) polymerases, PARPs, transfer ADP-ribose onto target proteins from nicotinamide adenine dinucleotide (NAD(+)). Current mass spectrometric analytical methods require proteolysis of target proteins, limiting the study of dynamic ADP-ribosylation on contiguous proteins...

Descripción completa

Detalles Bibliográficos
Autores principales: Wallace, Sean R., Chihab, Leila Y., Yamasaki, Miles, Yoshinaga, Braden T., Torres, Yazmin M., Rideaux, Damon, Javed, Zeeshan, Turumella, Soumya, Zhang, Michelle, Lawton, Dylan R., Fuller, Amelia A., Carter-O’Connell, Ian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2021
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8609518/
https://www.ncbi.nlm.nih.gov/pubmed/34647721
http://dx.doi.org/10.1021/acschembio.1c00542
Descripción
Sumario:[Image: see text] Poly(ADP-ribose) polymerases, PARPs, transfer ADP-ribose onto target proteins from nicotinamide adenine dinucleotide (NAD(+)). Current mass spectrometric analytical methods require proteolysis of target proteins, limiting the study of dynamic ADP-ribosylation on contiguous proteins. Herein, we present a matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) method that facilitates multisite analysis of ADP-ribosylation. We observe divergent ADP-ribosylation dynamics for the catalytic domains of PARPs 14 and 15, with PARP15 modifying more sites on itself (+3–4 ADP-ribose) than the closely related PARP14 protein (+1–2 ADP-ribose)—despite similar numbers of potential modification sites. We identify, for the first time, a minimal peptide fragment (18 amino-acids) that is preferentially modified by PARP14. Finally, we demonstrate through mutagenesis and chemical treatment with hydroxylamine that PARPs 14/15 prefer acidic residues. Our results highlight the utility of MALDI-TOF in the analysis of PARP target modifications and in elucidating the biochemical mechanism governing PARP target selection.