Cargando…
Evolutionary epigenomic analyses in mammalian early embryos reveal species-specific innovations and conserved principles of imprinting
While mouse remains the most popular model, the conservation of parental-to-embryonic epigenetic transition across mammals is poorly defined. Through analysis of oocytes and early embryos in human, bovine, porcine, rat, and mouse, we revealed remarkable species-specific innovations as no single anim...
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8612685/ https://www.ncbi.nlm.nih.gov/pubmed/34818044 http://dx.doi.org/10.1126/sciadv.abi6178 |
_version_ | 1784603495288012800 |
---|---|
author | Lu, Xukun Zhang, Yu Wang, Lijuan Wang, Leyun Wang, Huili Xu, Qianhua Xiang, Yunlong Chen, Chaolei Kong, Feng Xia, Weikun Lin, Zili Ma, Sinan Liu, Ling Wang, Xiangguo Ni, Hemin Li, Wei Guo, Yong Xie, Wei |
author_facet | Lu, Xukun Zhang, Yu Wang, Lijuan Wang, Leyun Wang, Huili Xu, Qianhua Xiang, Yunlong Chen, Chaolei Kong, Feng Xia, Weikun Lin, Zili Ma, Sinan Liu, Ling Wang, Xiangguo Ni, Hemin Li, Wei Guo, Yong Xie, Wei |
author_sort | Lu, Xukun |
collection | PubMed |
description | While mouse remains the most popular model, the conservation of parental-to-embryonic epigenetic transition across mammals is poorly defined. Through analysis of oocytes and early embryos in human, bovine, porcine, rat, and mouse, we revealed remarkable species-specific innovations as no single animal model fully recapitulates the human epigenetic transition. In rodent oocytes, transcription-dependent DNA methylation allows methylation of maternal imprints but not intergenic paternal imprints. Unexpectedly, prevalent DNA hypermethylation, paralleled by H3K36me2/3, also occurs in nontranscribed regions in porcine and bovine oocytes, except for megabase-long “CpG continents (CGCs)” where imprinting control regions preferentially reside. Broad H3K4me3 and H3K27me3 domains exist in nonhuman oocytes, yet only rodent H3K27me3 survives beyond genome activation. Coincidently, regulatory elements preferentially evade H3K27me3 in rodent oocytes, and failure to do so causes aberrant embryonic gene repression. Hence, the diverse mammalian innovations of parental-to-embryonic transition center on a delicate “to-methylate-or-not” balance in establishing imprints while protecting other regulatory regions. |
format | Online Article Text |
id | pubmed-8612685 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | American Association for the Advancement of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-86126852021-12-06 Evolutionary epigenomic analyses in mammalian early embryos reveal species-specific innovations and conserved principles of imprinting Lu, Xukun Zhang, Yu Wang, Lijuan Wang, Leyun Wang, Huili Xu, Qianhua Xiang, Yunlong Chen, Chaolei Kong, Feng Xia, Weikun Lin, Zili Ma, Sinan Liu, Ling Wang, Xiangguo Ni, Hemin Li, Wei Guo, Yong Xie, Wei Sci Adv Biomedicine and Life Sciences While mouse remains the most popular model, the conservation of parental-to-embryonic epigenetic transition across mammals is poorly defined. Through analysis of oocytes and early embryos in human, bovine, porcine, rat, and mouse, we revealed remarkable species-specific innovations as no single animal model fully recapitulates the human epigenetic transition. In rodent oocytes, transcription-dependent DNA methylation allows methylation of maternal imprints but not intergenic paternal imprints. Unexpectedly, prevalent DNA hypermethylation, paralleled by H3K36me2/3, also occurs in nontranscribed regions in porcine and bovine oocytes, except for megabase-long “CpG continents (CGCs)” where imprinting control regions preferentially reside. Broad H3K4me3 and H3K27me3 domains exist in nonhuman oocytes, yet only rodent H3K27me3 survives beyond genome activation. Coincidently, regulatory elements preferentially evade H3K27me3 in rodent oocytes, and failure to do so causes aberrant embryonic gene repression. Hence, the diverse mammalian innovations of parental-to-embryonic transition center on a delicate “to-methylate-or-not” balance in establishing imprints while protecting other regulatory regions. American Association for the Advancement of Science 2021-11-24 /pmc/articles/PMC8612685/ /pubmed/34818044 http://dx.doi.org/10.1126/sciadv.abi6178 Text en Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). https://creativecommons.org/licenses/by-nc/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license (https://creativecommons.org/licenses/by-nc/4.0/) , which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited. |
spellingShingle | Biomedicine and Life Sciences Lu, Xukun Zhang, Yu Wang, Lijuan Wang, Leyun Wang, Huili Xu, Qianhua Xiang, Yunlong Chen, Chaolei Kong, Feng Xia, Weikun Lin, Zili Ma, Sinan Liu, Ling Wang, Xiangguo Ni, Hemin Li, Wei Guo, Yong Xie, Wei Evolutionary epigenomic analyses in mammalian early embryos reveal species-specific innovations and conserved principles of imprinting |
title | Evolutionary epigenomic analyses in mammalian early embryos reveal species-specific innovations and conserved principles of imprinting |
title_full | Evolutionary epigenomic analyses in mammalian early embryos reveal species-specific innovations and conserved principles of imprinting |
title_fullStr | Evolutionary epigenomic analyses in mammalian early embryos reveal species-specific innovations and conserved principles of imprinting |
title_full_unstemmed | Evolutionary epigenomic analyses in mammalian early embryos reveal species-specific innovations and conserved principles of imprinting |
title_short | Evolutionary epigenomic analyses in mammalian early embryos reveal species-specific innovations and conserved principles of imprinting |
title_sort | evolutionary epigenomic analyses in mammalian early embryos reveal species-specific innovations and conserved principles of imprinting |
topic | Biomedicine and Life Sciences |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8612685/ https://www.ncbi.nlm.nih.gov/pubmed/34818044 http://dx.doi.org/10.1126/sciadv.abi6178 |
work_keys_str_mv | AT luxukun evolutionaryepigenomicanalysesinmammalianearlyembryosrevealspeciesspecificinnovationsandconservedprinciplesofimprinting AT zhangyu evolutionaryepigenomicanalysesinmammalianearlyembryosrevealspeciesspecificinnovationsandconservedprinciplesofimprinting AT wanglijuan evolutionaryepigenomicanalysesinmammalianearlyembryosrevealspeciesspecificinnovationsandconservedprinciplesofimprinting AT wangleyun evolutionaryepigenomicanalysesinmammalianearlyembryosrevealspeciesspecificinnovationsandconservedprinciplesofimprinting AT wanghuili evolutionaryepigenomicanalysesinmammalianearlyembryosrevealspeciesspecificinnovationsandconservedprinciplesofimprinting AT xuqianhua evolutionaryepigenomicanalysesinmammalianearlyembryosrevealspeciesspecificinnovationsandconservedprinciplesofimprinting AT xiangyunlong evolutionaryepigenomicanalysesinmammalianearlyembryosrevealspeciesspecificinnovationsandconservedprinciplesofimprinting AT chenchaolei evolutionaryepigenomicanalysesinmammalianearlyembryosrevealspeciesspecificinnovationsandconservedprinciplesofimprinting AT kongfeng evolutionaryepigenomicanalysesinmammalianearlyembryosrevealspeciesspecificinnovationsandconservedprinciplesofimprinting AT xiaweikun evolutionaryepigenomicanalysesinmammalianearlyembryosrevealspeciesspecificinnovationsandconservedprinciplesofimprinting AT linzili evolutionaryepigenomicanalysesinmammalianearlyembryosrevealspeciesspecificinnovationsandconservedprinciplesofimprinting AT masinan evolutionaryepigenomicanalysesinmammalianearlyembryosrevealspeciesspecificinnovationsandconservedprinciplesofimprinting AT liuling evolutionaryepigenomicanalysesinmammalianearlyembryosrevealspeciesspecificinnovationsandconservedprinciplesofimprinting AT wangxiangguo evolutionaryepigenomicanalysesinmammalianearlyembryosrevealspeciesspecificinnovationsandconservedprinciplesofimprinting AT nihemin evolutionaryepigenomicanalysesinmammalianearlyembryosrevealspeciesspecificinnovationsandconservedprinciplesofimprinting AT liwei evolutionaryepigenomicanalysesinmammalianearlyembryosrevealspeciesspecificinnovationsandconservedprinciplesofimprinting AT guoyong evolutionaryepigenomicanalysesinmammalianearlyembryosrevealspeciesspecificinnovationsandconservedprinciplesofimprinting AT xiewei evolutionaryepigenomicanalysesinmammalianearlyembryosrevealspeciesspecificinnovationsandconservedprinciplesofimprinting |