Cargando…

Evolutionary epigenomic analyses in mammalian early embryos reveal species-specific innovations and conserved principles of imprinting

While mouse remains the most popular model, the conservation of parental-to-embryonic epigenetic transition across mammals is poorly defined. Through analysis of oocytes and early embryos in human, bovine, porcine, rat, and mouse, we revealed remarkable species-specific innovations as no single anim...

Descripción completa

Detalles Bibliográficos
Autores principales: Lu, Xukun, Zhang, Yu, Wang, Lijuan, Wang, Leyun, Wang, Huili, Xu, Qianhua, Xiang, Yunlong, Chen, Chaolei, Kong, Feng, Xia, Weikun, Lin, Zili, Ma, Sinan, Liu, Ling, Wang, Xiangguo, Ni, Hemin, Li, Wei, Guo, Yong, Xie, Wei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8612685/
https://www.ncbi.nlm.nih.gov/pubmed/34818044
http://dx.doi.org/10.1126/sciadv.abi6178
_version_ 1784603495288012800
author Lu, Xukun
Zhang, Yu
Wang, Lijuan
Wang, Leyun
Wang, Huili
Xu, Qianhua
Xiang, Yunlong
Chen, Chaolei
Kong, Feng
Xia, Weikun
Lin, Zili
Ma, Sinan
Liu, Ling
Wang, Xiangguo
Ni, Hemin
Li, Wei
Guo, Yong
Xie, Wei
author_facet Lu, Xukun
Zhang, Yu
Wang, Lijuan
Wang, Leyun
Wang, Huili
Xu, Qianhua
Xiang, Yunlong
Chen, Chaolei
Kong, Feng
Xia, Weikun
Lin, Zili
Ma, Sinan
Liu, Ling
Wang, Xiangguo
Ni, Hemin
Li, Wei
Guo, Yong
Xie, Wei
author_sort Lu, Xukun
collection PubMed
description While mouse remains the most popular model, the conservation of parental-to-embryonic epigenetic transition across mammals is poorly defined. Through analysis of oocytes and early embryos in human, bovine, porcine, rat, and mouse, we revealed remarkable species-specific innovations as no single animal model fully recapitulates the human epigenetic transition. In rodent oocytes, transcription-dependent DNA methylation allows methylation of maternal imprints but not intergenic paternal imprints. Unexpectedly, prevalent DNA hypermethylation, paralleled by H3K36me2/3, also occurs in nontranscribed regions in porcine and bovine oocytes, except for megabase-long “CpG continents (CGCs)” where imprinting control regions preferentially reside. Broad H3K4me3 and H3K27me3 domains exist in nonhuman oocytes, yet only rodent H3K27me3 survives beyond genome activation. Coincidently, regulatory elements preferentially evade H3K27me3 in rodent oocytes, and failure to do so causes aberrant embryonic gene repression. Hence, the diverse mammalian innovations of parental-to-embryonic transition center on a delicate “to-methylate-or-not” balance in establishing imprints while protecting other regulatory regions.
format Online
Article
Text
id pubmed-8612685
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher American Association for the Advancement of Science
record_format MEDLINE/PubMed
spelling pubmed-86126852021-12-06 Evolutionary epigenomic analyses in mammalian early embryos reveal species-specific innovations and conserved principles of imprinting Lu, Xukun Zhang, Yu Wang, Lijuan Wang, Leyun Wang, Huili Xu, Qianhua Xiang, Yunlong Chen, Chaolei Kong, Feng Xia, Weikun Lin, Zili Ma, Sinan Liu, Ling Wang, Xiangguo Ni, Hemin Li, Wei Guo, Yong Xie, Wei Sci Adv Biomedicine and Life Sciences While mouse remains the most popular model, the conservation of parental-to-embryonic epigenetic transition across mammals is poorly defined. Through analysis of oocytes and early embryos in human, bovine, porcine, rat, and mouse, we revealed remarkable species-specific innovations as no single animal model fully recapitulates the human epigenetic transition. In rodent oocytes, transcription-dependent DNA methylation allows methylation of maternal imprints but not intergenic paternal imprints. Unexpectedly, prevalent DNA hypermethylation, paralleled by H3K36me2/3, also occurs in nontranscribed regions in porcine and bovine oocytes, except for megabase-long “CpG continents (CGCs)” where imprinting control regions preferentially reside. Broad H3K4me3 and H3K27me3 domains exist in nonhuman oocytes, yet only rodent H3K27me3 survives beyond genome activation. Coincidently, regulatory elements preferentially evade H3K27me3 in rodent oocytes, and failure to do so causes aberrant embryonic gene repression. Hence, the diverse mammalian innovations of parental-to-embryonic transition center on a delicate “to-methylate-or-not” balance in establishing imprints while protecting other regulatory regions. American Association for the Advancement of Science 2021-11-24 /pmc/articles/PMC8612685/ /pubmed/34818044 http://dx.doi.org/10.1126/sciadv.abi6178 Text en Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). https://creativecommons.org/licenses/by-nc/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license (https://creativecommons.org/licenses/by-nc/4.0/) , which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.
spellingShingle Biomedicine and Life Sciences
Lu, Xukun
Zhang, Yu
Wang, Lijuan
Wang, Leyun
Wang, Huili
Xu, Qianhua
Xiang, Yunlong
Chen, Chaolei
Kong, Feng
Xia, Weikun
Lin, Zili
Ma, Sinan
Liu, Ling
Wang, Xiangguo
Ni, Hemin
Li, Wei
Guo, Yong
Xie, Wei
Evolutionary epigenomic analyses in mammalian early embryos reveal species-specific innovations and conserved principles of imprinting
title Evolutionary epigenomic analyses in mammalian early embryos reveal species-specific innovations and conserved principles of imprinting
title_full Evolutionary epigenomic analyses in mammalian early embryos reveal species-specific innovations and conserved principles of imprinting
title_fullStr Evolutionary epigenomic analyses in mammalian early embryos reveal species-specific innovations and conserved principles of imprinting
title_full_unstemmed Evolutionary epigenomic analyses in mammalian early embryos reveal species-specific innovations and conserved principles of imprinting
title_short Evolutionary epigenomic analyses in mammalian early embryos reveal species-specific innovations and conserved principles of imprinting
title_sort evolutionary epigenomic analyses in mammalian early embryos reveal species-specific innovations and conserved principles of imprinting
topic Biomedicine and Life Sciences
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8612685/
https://www.ncbi.nlm.nih.gov/pubmed/34818044
http://dx.doi.org/10.1126/sciadv.abi6178
work_keys_str_mv AT luxukun evolutionaryepigenomicanalysesinmammalianearlyembryosrevealspeciesspecificinnovationsandconservedprinciplesofimprinting
AT zhangyu evolutionaryepigenomicanalysesinmammalianearlyembryosrevealspeciesspecificinnovationsandconservedprinciplesofimprinting
AT wanglijuan evolutionaryepigenomicanalysesinmammalianearlyembryosrevealspeciesspecificinnovationsandconservedprinciplesofimprinting
AT wangleyun evolutionaryepigenomicanalysesinmammalianearlyembryosrevealspeciesspecificinnovationsandconservedprinciplesofimprinting
AT wanghuili evolutionaryepigenomicanalysesinmammalianearlyembryosrevealspeciesspecificinnovationsandconservedprinciplesofimprinting
AT xuqianhua evolutionaryepigenomicanalysesinmammalianearlyembryosrevealspeciesspecificinnovationsandconservedprinciplesofimprinting
AT xiangyunlong evolutionaryepigenomicanalysesinmammalianearlyembryosrevealspeciesspecificinnovationsandconservedprinciplesofimprinting
AT chenchaolei evolutionaryepigenomicanalysesinmammalianearlyembryosrevealspeciesspecificinnovationsandconservedprinciplesofimprinting
AT kongfeng evolutionaryepigenomicanalysesinmammalianearlyembryosrevealspeciesspecificinnovationsandconservedprinciplesofimprinting
AT xiaweikun evolutionaryepigenomicanalysesinmammalianearlyembryosrevealspeciesspecificinnovationsandconservedprinciplesofimprinting
AT linzili evolutionaryepigenomicanalysesinmammalianearlyembryosrevealspeciesspecificinnovationsandconservedprinciplesofimprinting
AT masinan evolutionaryepigenomicanalysesinmammalianearlyembryosrevealspeciesspecificinnovationsandconservedprinciplesofimprinting
AT liuling evolutionaryepigenomicanalysesinmammalianearlyembryosrevealspeciesspecificinnovationsandconservedprinciplesofimprinting
AT wangxiangguo evolutionaryepigenomicanalysesinmammalianearlyembryosrevealspeciesspecificinnovationsandconservedprinciplesofimprinting
AT nihemin evolutionaryepigenomicanalysesinmammalianearlyembryosrevealspeciesspecificinnovationsandconservedprinciplesofimprinting
AT liwei evolutionaryepigenomicanalysesinmammalianearlyembryosrevealspeciesspecificinnovationsandconservedprinciplesofimprinting
AT guoyong evolutionaryepigenomicanalysesinmammalianearlyembryosrevealspeciesspecificinnovationsandconservedprinciplesofimprinting
AT xiewei evolutionaryepigenomicanalysesinmammalianearlyembryosrevealspeciesspecificinnovationsandconservedprinciplesofimprinting