Cargando…

Systematic measurement of combination-drug landscapes to predict in vivo treatment outcomes for tuberculosis

Lengthy multidrug chemotherapy is required to achieve a durable cure in tuberculosis. However, we lack well-validated, high-throughput in vitro models that predict animal outcomes. Here, we provide an extensible approach to rationally prioritize combination therapies for testing in in vivo mouse mod...

Descripción completa

Detalles Bibliográficos
Autores principales: Larkins-Ford, Jonah, Greenstein, Talia, Van, Nhi, Degefu, Yonatan N., Olson, Michaela C., Sokolov, Artem, Aldridge, Bree B.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cell Press 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8617591/
https://www.ncbi.nlm.nih.gov/pubmed/34469743
http://dx.doi.org/10.1016/j.cels.2021.08.004
Descripción
Sumario:Lengthy multidrug chemotherapy is required to achieve a durable cure in tuberculosis. However, we lack well-validated, high-throughput in vitro models that predict animal outcomes. Here, we provide an extensible approach to rationally prioritize combination therapies for testing in in vivo mouse models of tuberculosis. We systematically measured Mycobacterium tuberculosis response to all two- and three-drug combinations among ten antibiotics in eight conditions that reproduce lesion microenvironments, resulting in >500,000 measurements. Using these in vitro data, we developed classifiers predictive of multidrug treatment outcome in a mouse model of disease relapse and identified ensembles of in vitro models that best describe in vivo treatment outcomes. We identified signatures of potencies and drug interactions in specific in vitro models that distinguish whether drug combinations are better than the standard of care in two important preclinical mouse models. Our framework is generalizable to other difficult-to-treat diseases requiring combination therapies. A record of this paper’s transparent peer review process is included in the supplemental information.