Cargando…
MLb-LDLr: A Machine Learning Model for Predicting the Pathogenicity of LDLr Missense Variants
Untreated familial hypercholesterolemia (FH) leads to atherosclerosis and early cardiovascular disease. Mutations in the low-density lipoprotein receptor (LDLr) gene constitute the major cause of FH, and the high number of mutations already described in the LDLr makes necessary cascade screening or...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8617597/ https://www.ncbi.nlm.nih.gov/pubmed/34869944 http://dx.doi.org/10.1016/j.jacbts.2021.08.009 |
_version_ | 1784604543733989376 |
---|---|
author | Larrea-Sebal, Asier Benito-Vicente, Asier Fernandez-Higuero, José A. Jebari-Benslaiman, Shifa Galicia-Garcia, Unai Uribe, Kepa B. Cenarro, Ana Ostolaza, Helena Civeira, Fernando Arrasate, Sonia González-Díaz, Humberto Martín, César |
author_facet | Larrea-Sebal, Asier Benito-Vicente, Asier Fernandez-Higuero, José A. Jebari-Benslaiman, Shifa Galicia-Garcia, Unai Uribe, Kepa B. Cenarro, Ana Ostolaza, Helena Civeira, Fernando Arrasate, Sonia González-Díaz, Humberto Martín, César |
author_sort | Larrea-Sebal, Asier |
collection | PubMed |
description | Untreated familial hypercholesterolemia (FH) leads to atherosclerosis and early cardiovascular disease. Mutations in the low-density lipoprotein receptor (LDLr) gene constitute the major cause of FH, and the high number of mutations already described in the LDLr makes necessary cascade screening or in vitro functional characterization to provide a definitive diagnosis. Implementation of high-predicting capacity software constitutes a valuable approach for assessing pathogenicity of LDLr variants to help in the early diagnosis and management of FH disease. This work provides a reliable machine learning model to accurately predict the pathogenicity of LDLr missense variants with specificity of 92.5% and sensitivity of 91.6%. |
format | Online Article Text |
id | pubmed-8617597 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-86175972021-12-02 MLb-LDLr: A Machine Learning Model for Predicting the Pathogenicity of LDLr Missense Variants Larrea-Sebal, Asier Benito-Vicente, Asier Fernandez-Higuero, José A. Jebari-Benslaiman, Shifa Galicia-Garcia, Unai Uribe, Kepa B. Cenarro, Ana Ostolaza, Helena Civeira, Fernando Arrasate, Sonia González-Díaz, Humberto Martín, César JACC Basic Transl Sci Preclinical Research Untreated familial hypercholesterolemia (FH) leads to atherosclerosis and early cardiovascular disease. Mutations in the low-density lipoprotein receptor (LDLr) gene constitute the major cause of FH, and the high number of mutations already described in the LDLr makes necessary cascade screening or in vitro functional characterization to provide a definitive diagnosis. Implementation of high-predicting capacity software constitutes a valuable approach for assessing pathogenicity of LDLr variants to help in the early diagnosis and management of FH disease. This work provides a reliable machine learning model to accurately predict the pathogenicity of LDLr missense variants with specificity of 92.5% and sensitivity of 91.6%. Elsevier 2021-11-22 /pmc/articles/PMC8617597/ /pubmed/34869944 http://dx.doi.org/10.1016/j.jacbts.2021.08.009 Text en © 2021 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Preclinical Research Larrea-Sebal, Asier Benito-Vicente, Asier Fernandez-Higuero, José A. Jebari-Benslaiman, Shifa Galicia-Garcia, Unai Uribe, Kepa B. Cenarro, Ana Ostolaza, Helena Civeira, Fernando Arrasate, Sonia González-Díaz, Humberto Martín, César MLb-LDLr: A Machine Learning Model for Predicting the Pathogenicity of LDLr Missense Variants |
title | MLb-LDLr: A Machine Learning Model for Predicting the Pathogenicity of LDLr Missense Variants |
title_full | MLb-LDLr: A Machine Learning Model for Predicting the Pathogenicity of LDLr Missense Variants |
title_fullStr | MLb-LDLr: A Machine Learning Model for Predicting the Pathogenicity of LDLr Missense Variants |
title_full_unstemmed | MLb-LDLr: A Machine Learning Model for Predicting the Pathogenicity of LDLr Missense Variants |
title_short | MLb-LDLr: A Machine Learning Model for Predicting the Pathogenicity of LDLr Missense Variants |
title_sort | mlb-ldlr: a machine learning model for predicting the pathogenicity of ldlr missense variants |
topic | Preclinical Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8617597/ https://www.ncbi.nlm.nih.gov/pubmed/34869944 http://dx.doi.org/10.1016/j.jacbts.2021.08.009 |
work_keys_str_mv | AT larreasebalasier mlbldlramachinelearningmodelforpredictingthepathogenicityofldlrmissensevariants AT benitovicenteasier mlbldlramachinelearningmodelforpredictingthepathogenicityofldlrmissensevariants AT fernandezhiguerojosea mlbldlramachinelearningmodelforpredictingthepathogenicityofldlrmissensevariants AT jebaribenslaimanshifa mlbldlramachinelearningmodelforpredictingthepathogenicityofldlrmissensevariants AT galiciagarciaunai mlbldlramachinelearningmodelforpredictingthepathogenicityofldlrmissensevariants AT uribekepab mlbldlramachinelearningmodelforpredictingthepathogenicityofldlrmissensevariants AT cenarroana mlbldlramachinelearningmodelforpredictingthepathogenicityofldlrmissensevariants AT ostolazahelena mlbldlramachinelearningmodelforpredictingthepathogenicityofldlrmissensevariants AT civeirafernando mlbldlramachinelearningmodelforpredictingthepathogenicityofldlrmissensevariants AT arrasatesonia mlbldlramachinelearningmodelforpredictingthepathogenicityofldlrmissensevariants AT gonzalezdiazhumberto mlbldlramachinelearningmodelforpredictingthepathogenicityofldlrmissensevariants AT martincesar mlbldlramachinelearningmodelforpredictingthepathogenicityofldlrmissensevariants |