Cargando…

MLb-LDLr: A Machine Learning Model for Predicting the Pathogenicity of LDLr Missense Variants

Untreated familial hypercholesterolemia (FH) leads to atherosclerosis and early cardiovascular disease. Mutations in the low-density lipoprotein receptor (LDLr) gene constitute the major cause of FH, and the high number of mutations already described in the LDLr makes necessary cascade screening or...

Descripción completa

Detalles Bibliográficos
Autores principales: Larrea-Sebal, Asier, Benito-Vicente, Asier, Fernandez-Higuero, José A., Jebari-Benslaiman, Shifa, Galicia-Garcia, Unai, Uribe, Kepa B., Cenarro, Ana, Ostolaza, Helena, Civeira, Fernando, Arrasate, Sonia, González-Díaz, Humberto, Martín, César
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8617597/
https://www.ncbi.nlm.nih.gov/pubmed/34869944
http://dx.doi.org/10.1016/j.jacbts.2021.08.009
_version_ 1784604543733989376
author Larrea-Sebal, Asier
Benito-Vicente, Asier
Fernandez-Higuero, José A.
Jebari-Benslaiman, Shifa
Galicia-Garcia, Unai
Uribe, Kepa B.
Cenarro, Ana
Ostolaza, Helena
Civeira, Fernando
Arrasate, Sonia
González-Díaz, Humberto
Martín, César
author_facet Larrea-Sebal, Asier
Benito-Vicente, Asier
Fernandez-Higuero, José A.
Jebari-Benslaiman, Shifa
Galicia-Garcia, Unai
Uribe, Kepa B.
Cenarro, Ana
Ostolaza, Helena
Civeira, Fernando
Arrasate, Sonia
González-Díaz, Humberto
Martín, César
author_sort Larrea-Sebal, Asier
collection PubMed
description Untreated familial hypercholesterolemia (FH) leads to atherosclerosis and early cardiovascular disease. Mutations in the low-density lipoprotein receptor (LDLr) gene constitute the major cause of FH, and the high number of mutations already described in the LDLr makes necessary cascade screening or in vitro functional characterization to provide a definitive diagnosis. Implementation of high-predicting capacity software constitutes a valuable approach for assessing pathogenicity of LDLr variants to help in the early diagnosis and management of FH disease. This work provides a reliable machine learning model to accurately predict the pathogenicity of LDLr missense variants with specificity of 92.5% and sensitivity of 91.6%.
format Online
Article
Text
id pubmed-8617597
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-86175972021-12-02 MLb-LDLr: A Machine Learning Model for Predicting the Pathogenicity of LDLr Missense Variants Larrea-Sebal, Asier Benito-Vicente, Asier Fernandez-Higuero, José A. Jebari-Benslaiman, Shifa Galicia-Garcia, Unai Uribe, Kepa B. Cenarro, Ana Ostolaza, Helena Civeira, Fernando Arrasate, Sonia González-Díaz, Humberto Martín, César JACC Basic Transl Sci Preclinical Research Untreated familial hypercholesterolemia (FH) leads to atherosclerosis and early cardiovascular disease. Mutations in the low-density lipoprotein receptor (LDLr) gene constitute the major cause of FH, and the high number of mutations already described in the LDLr makes necessary cascade screening or in vitro functional characterization to provide a definitive diagnosis. Implementation of high-predicting capacity software constitutes a valuable approach for assessing pathogenicity of LDLr variants to help in the early diagnosis and management of FH disease. This work provides a reliable machine learning model to accurately predict the pathogenicity of LDLr missense variants with specificity of 92.5% and sensitivity of 91.6%. Elsevier 2021-11-22 /pmc/articles/PMC8617597/ /pubmed/34869944 http://dx.doi.org/10.1016/j.jacbts.2021.08.009 Text en © 2021 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Preclinical Research
Larrea-Sebal, Asier
Benito-Vicente, Asier
Fernandez-Higuero, José A.
Jebari-Benslaiman, Shifa
Galicia-Garcia, Unai
Uribe, Kepa B.
Cenarro, Ana
Ostolaza, Helena
Civeira, Fernando
Arrasate, Sonia
González-Díaz, Humberto
Martín, César
MLb-LDLr: A Machine Learning Model for Predicting the Pathogenicity of LDLr Missense Variants
title MLb-LDLr: A Machine Learning Model for Predicting the Pathogenicity of LDLr Missense Variants
title_full MLb-LDLr: A Machine Learning Model for Predicting the Pathogenicity of LDLr Missense Variants
title_fullStr MLb-LDLr: A Machine Learning Model for Predicting the Pathogenicity of LDLr Missense Variants
title_full_unstemmed MLb-LDLr: A Machine Learning Model for Predicting the Pathogenicity of LDLr Missense Variants
title_short MLb-LDLr: A Machine Learning Model for Predicting the Pathogenicity of LDLr Missense Variants
title_sort mlb-ldlr: a machine learning model for predicting the pathogenicity of ldlr missense variants
topic Preclinical Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8617597/
https://www.ncbi.nlm.nih.gov/pubmed/34869944
http://dx.doi.org/10.1016/j.jacbts.2021.08.009
work_keys_str_mv AT larreasebalasier mlbldlramachinelearningmodelforpredictingthepathogenicityofldlrmissensevariants
AT benitovicenteasier mlbldlramachinelearningmodelforpredictingthepathogenicityofldlrmissensevariants
AT fernandezhiguerojosea mlbldlramachinelearningmodelforpredictingthepathogenicityofldlrmissensevariants
AT jebaribenslaimanshifa mlbldlramachinelearningmodelforpredictingthepathogenicityofldlrmissensevariants
AT galiciagarciaunai mlbldlramachinelearningmodelforpredictingthepathogenicityofldlrmissensevariants
AT uribekepab mlbldlramachinelearningmodelforpredictingthepathogenicityofldlrmissensevariants
AT cenarroana mlbldlramachinelearningmodelforpredictingthepathogenicityofldlrmissensevariants
AT ostolazahelena mlbldlramachinelearningmodelforpredictingthepathogenicityofldlrmissensevariants
AT civeirafernando mlbldlramachinelearningmodelforpredictingthepathogenicityofldlrmissensevariants
AT arrasatesonia mlbldlramachinelearningmodelforpredictingthepathogenicityofldlrmissensevariants
AT gonzalezdiazhumberto mlbldlramachinelearningmodelforpredictingthepathogenicityofldlrmissensevariants
AT martincesar mlbldlramachinelearningmodelforpredictingthepathogenicityofldlrmissensevariants