Cargando…
Still No Free Lunches: The Price to Pay for Tighter PAC-Bayes Bounds
“No free lunch” results state the impossibility of obtaining meaningful bounds on the error of a learning algorithm without prior assumptions and modelling, which is more or less realistic for a given problem. Some models are “expensive” (strong assumptions, such as sub-Gaussian tails), others are “...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8619508/ https://www.ncbi.nlm.nih.gov/pubmed/34828227 http://dx.doi.org/10.3390/e23111529 |