Cargando…

Still No Free Lunches: The Price to Pay for Tighter PAC-Bayes Bounds

“No free lunch” results state the impossibility of obtaining meaningful bounds on the error of a learning algorithm without prior assumptions and modelling, which is more or less realistic for a given problem. Some models are “expensive” (strong assumptions, such as sub-Gaussian tails), others are “...

Descripción completa

Detalles Bibliográficos
Autores principales: Guedj, Benjamin, Pujol, Louis
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8619508/
https://www.ncbi.nlm.nih.gov/pubmed/34828227
http://dx.doi.org/10.3390/e23111529