Cargando…

Uncertainty Estimation of Dense Optical Flow for Robust Visual Navigation †

This paper presents a novel dense optical-flow algorithm to solve the monocular simultaneous localisation and mapping (SLAM) problem for ground or aerial robots. Dense optical flow can effectively provide the ego-motion of the vehicle while enabling collision avoidance with the potential obstacles....

Descripción completa

Detalles Bibliográficos
Autores principales: Ng, Yonhon, Li, Hongdong, Kim, Jonghyuk
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8619691/
https://www.ncbi.nlm.nih.gov/pubmed/34833677
http://dx.doi.org/10.3390/s21227603
_version_ 1784605054891720704
author Ng, Yonhon
Li, Hongdong
Kim, Jonghyuk
author_facet Ng, Yonhon
Li, Hongdong
Kim, Jonghyuk
author_sort Ng, Yonhon
collection PubMed
description This paper presents a novel dense optical-flow algorithm to solve the monocular simultaneous localisation and mapping (SLAM) problem for ground or aerial robots. Dense optical flow can effectively provide the ego-motion of the vehicle while enabling collision avoidance with the potential obstacles. Existing research has not fully utilised the uncertainty of the optical flow—at most, an isotropic Gaussian density model has been used. We estimate the full uncertainty of the optical flow and propose a new eight-point algorithm based on the statistical Mahalanobis distance. Combined with the pose-graph optimisation, the proposed method demonstrates enhanced robustness and accuracy for the public autonomous car dataset (KITTI) and aerial monocular dataset.
format Online
Article
Text
id pubmed-8619691
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-86196912021-11-27 Uncertainty Estimation of Dense Optical Flow for Robust Visual Navigation † Ng, Yonhon Li, Hongdong Kim, Jonghyuk Sensors (Basel) Article This paper presents a novel dense optical-flow algorithm to solve the monocular simultaneous localisation and mapping (SLAM) problem for ground or aerial robots. Dense optical flow can effectively provide the ego-motion of the vehicle while enabling collision avoidance with the potential obstacles. Existing research has not fully utilised the uncertainty of the optical flow—at most, an isotropic Gaussian density model has been used. We estimate the full uncertainty of the optical flow and propose a new eight-point algorithm based on the statistical Mahalanobis distance. Combined with the pose-graph optimisation, the proposed method demonstrates enhanced robustness and accuracy for the public autonomous car dataset (KITTI) and aerial monocular dataset. MDPI 2021-11-16 /pmc/articles/PMC8619691/ /pubmed/34833677 http://dx.doi.org/10.3390/s21227603 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Ng, Yonhon
Li, Hongdong
Kim, Jonghyuk
Uncertainty Estimation of Dense Optical Flow for Robust Visual Navigation †
title Uncertainty Estimation of Dense Optical Flow for Robust Visual Navigation †
title_full Uncertainty Estimation of Dense Optical Flow for Robust Visual Navigation †
title_fullStr Uncertainty Estimation of Dense Optical Flow for Robust Visual Navigation †
title_full_unstemmed Uncertainty Estimation of Dense Optical Flow for Robust Visual Navigation †
title_short Uncertainty Estimation of Dense Optical Flow for Robust Visual Navigation †
title_sort uncertainty estimation of dense optical flow for robust visual navigation †
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8619691/
https://www.ncbi.nlm.nih.gov/pubmed/34833677
http://dx.doi.org/10.3390/s21227603
work_keys_str_mv AT ngyonhon uncertaintyestimationofdenseopticalflowforrobustvisualnavigation
AT lihongdong uncertaintyestimationofdenseopticalflowforrobustvisualnavigation
AT kimjonghyuk uncertaintyestimationofdenseopticalflowforrobustvisualnavigation