Cargando…
MoTe(2) Field-Effect Transistors with Low Contact Resistance through Phase Tuning by Laser Irradiation
Due to their extraordinary electrical and physical properties, two-dimensional (2D) transition metal dichalcogenides (TMDs) are considered promising for use in next-generation electrical devices. However, the application of TMD-based devices is limited because of the Schottky barrier interface resul...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8620056/ https://www.ncbi.nlm.nih.gov/pubmed/34835570 http://dx.doi.org/10.3390/nano11112805 |
Sumario: | Due to their extraordinary electrical and physical properties, two-dimensional (2D) transition metal dichalcogenides (TMDs) are considered promising for use in next-generation electrical devices. However, the application of TMD-based devices is limited because of the Schottky barrier interface resulting from the absence of dangling bonds on the TMDs’ surface. Here, we introduce a facile phase-tuning approach for forming a homogenous interface between semiconducting hexagonal (2H) and semi-metallic monoclinic (1T′) molybdenum ditelluride (MoTe(2)). The formation of ohmic contacts increases the charge carrier mobility of MoTe(2) field-effect transistor devices to 16.1 cm(2) V(−1)s(−1) with high reproducibility, while maintaining a high on/off current ratio by efficiently improving charge injection at the interface. The proposed method enables a simple fabrication process, local patterning, and large-area scaling for the creation of high-performance 2D electronic devices. |
---|