Cargando…
Randomized quantile residuals for diagnosing zero-inflated generalized linear mixed models with applications to microbiome count data
BACKGROUND: For differential abundance analysis, zero-inflated generalized linear models, typically zero-inflated NB models, have been increasingly used to model microbiome and other sequencing count data. A common assumption in estimating the false discovery rate is that the p values are uniformly...
Autores principales: | Bai, Wei, Dong, Mei, Li, Longhai, Feng, Cindy, Xu, Wei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8620156/ https://www.ncbi.nlm.nih.gov/pubmed/34823466 http://dx.doi.org/10.1186/s12859-021-04371-6 |
Ejemplares similares
-
A comparison of zero-inflated and hurdle models for modeling zero-inflated count data
por: Feng, Cindy Xin
Publicado: (2021) -
Powerful and robust non-parametric association testing for microbiome data via a zero-inflated quantile approach (ZINQ)
por: Ling, Wodan, et al.
Publicado: (2021) -
Generalized linear mixed quantile regression with panel data
por: Lu, Xiaoming, et al.
Publicado: (2020) -
A comparison of residual diagnosis tools for diagnosing regression models for count data
por: Feng, Cindy, et al.
Publicado: (2020) -
On the equivalence of one‐inflated zero‐truncated and zero‐truncated one‐inflated count data likelihoods
por: Böhning, Dankmar
Publicado: (2022)