Cargando…

Increased Provision of Bioavailable Mg through Vegetables Could Significantly Reduce the Growing Health and Economic Burden Caused by Mg Malnutrition

Magnesium (Mg) is an essential mineral nutrient for human health and its deficiency associated with many diseases, including stroke, heart failure, and type 2 diabetes. Vegetables are an important source of dietary Mg for humans. In this study, we quantified vegetable Mg content by a global meat ana...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Dunyi, Lu, Ming, Lakshmanan, Prakash, Hu, Ziyi, Chen, Xinping
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8620491/
https://www.ncbi.nlm.nih.gov/pubmed/34828794
http://dx.doi.org/10.3390/foods10112513
Descripción
Sumario:Magnesium (Mg) is an essential mineral nutrient for human health and its deficiency associated with many diseases, including stroke, heart failure, and type 2 diabetes. Vegetables are an important source of dietary Mg for humans. In this study, we quantified vegetable Mg content by a global meat analysis, analyzed human health, and economic impact caused by Mg deficiency. Results revealed that vegetable Mg content showed a large variation with an average value of 19.3 mg 100 g(−1) FW. Variation in per capita vegetable-Mg supply in different continents is largely ascribed to continental difference in the amount and the type of vegetables produced. The health and economic loss attributed to Mg deficiency are estimated to be 1.91 million disability-adjusted life years (DALYs) and 15.8 billion dollars (0.14% of GDP), respectively. A scenario analysis indicated that the increasing vegetable production (increased by 8.9% and 20.7% relative to 2017 in 2030 and 2050) and vegetable Mg content (increased by 22% through biofortification) could significantly reduce DALYs (1.24 million years) and economic burden (0.09% of GDP). This study could guide a major re-balance of production practices, species cultivated, and Mg biofortification to provide sufficient vegetable Mg for better human Mg nutrition.