Cargando…

Metamaterial-Engineered Silicon Beam Splitter Fabricated with Deep UV Immersion Lithography

Subwavelength grating (SWG) metamaterials have garnered a great interest for their singular capability to shape the material properties and the propagation of light, allowing the realization of devices with unprecedented performance. However, practical SWG implementations are limited by fabrication...

Descripción completa

Detalles Bibliográficos
Autores principales: Vakarin, Vladyslav, Melati, Daniele, Dinh, Thi Thuy Duong, Le Roux, Xavier, Kan, Warren Kut King, Dupré, Cécilia, Szelag, Bertrand, Monfray, Stéphane, Boeuf, Frédéric, Cheben, Pavel, Cassan, Eric, Marris-Morini, Delphine, Vivien, Laurent, Alonso-Ramos, Carlos Alberto
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8620797/
https://www.ncbi.nlm.nih.gov/pubmed/34835713
http://dx.doi.org/10.3390/nano11112949
_version_ 1784605305575833600
author Vakarin, Vladyslav
Melati, Daniele
Dinh, Thi Thuy Duong
Le Roux, Xavier
Kan, Warren Kut King
Dupré, Cécilia
Szelag, Bertrand
Monfray, Stéphane
Boeuf, Frédéric
Cheben, Pavel
Cassan, Eric
Marris-Morini, Delphine
Vivien, Laurent
Alonso-Ramos, Carlos Alberto
author_facet Vakarin, Vladyslav
Melati, Daniele
Dinh, Thi Thuy Duong
Le Roux, Xavier
Kan, Warren Kut King
Dupré, Cécilia
Szelag, Bertrand
Monfray, Stéphane
Boeuf, Frédéric
Cheben, Pavel
Cassan, Eric
Marris-Morini, Delphine
Vivien, Laurent
Alonso-Ramos, Carlos Alberto
author_sort Vakarin, Vladyslav
collection PubMed
description Subwavelength grating (SWG) metamaterials have garnered a great interest for their singular capability to shape the material properties and the propagation of light, allowing the realization of devices with unprecedented performance. However, practical SWG implementations are limited by fabrication constraints, such as minimum feature size, that restrict the available design space or compromise compatibility with high-volume fabrication technologies. Indeed, most successful SWG realizations so far relied on electron-beam lithographic techniques, compromising the scalability of the approach. Here, we report the experimental demonstration of an SWG metamaterial engineered beam splitter fabricated with deep-ultraviolet immersion lithography in a 300-mm silicon-on-insulator technology. The metamaterial beam splitter exhibits high performance over a measured bandwidth exceeding 186 nm centered at 1550 nm. These results open a new route for the development of scalable silicon photonic circuits exploiting flexible metamaterial engineering.
format Online
Article
Text
id pubmed-8620797
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-86207972021-11-27 Metamaterial-Engineered Silicon Beam Splitter Fabricated with Deep UV Immersion Lithography Vakarin, Vladyslav Melati, Daniele Dinh, Thi Thuy Duong Le Roux, Xavier Kan, Warren Kut King Dupré, Cécilia Szelag, Bertrand Monfray, Stéphane Boeuf, Frédéric Cheben, Pavel Cassan, Eric Marris-Morini, Delphine Vivien, Laurent Alonso-Ramos, Carlos Alberto Nanomaterials (Basel) Article Subwavelength grating (SWG) metamaterials have garnered a great interest for their singular capability to shape the material properties and the propagation of light, allowing the realization of devices with unprecedented performance. However, practical SWG implementations are limited by fabrication constraints, such as minimum feature size, that restrict the available design space or compromise compatibility with high-volume fabrication technologies. Indeed, most successful SWG realizations so far relied on electron-beam lithographic techniques, compromising the scalability of the approach. Here, we report the experimental demonstration of an SWG metamaterial engineered beam splitter fabricated with deep-ultraviolet immersion lithography in a 300-mm silicon-on-insulator technology. The metamaterial beam splitter exhibits high performance over a measured bandwidth exceeding 186 nm centered at 1550 nm. These results open a new route for the development of scalable silicon photonic circuits exploiting flexible metamaterial engineering. MDPI 2021-11-03 /pmc/articles/PMC8620797/ /pubmed/34835713 http://dx.doi.org/10.3390/nano11112949 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Vakarin, Vladyslav
Melati, Daniele
Dinh, Thi Thuy Duong
Le Roux, Xavier
Kan, Warren Kut King
Dupré, Cécilia
Szelag, Bertrand
Monfray, Stéphane
Boeuf, Frédéric
Cheben, Pavel
Cassan, Eric
Marris-Morini, Delphine
Vivien, Laurent
Alonso-Ramos, Carlos Alberto
Metamaterial-Engineered Silicon Beam Splitter Fabricated with Deep UV Immersion Lithography
title Metamaterial-Engineered Silicon Beam Splitter Fabricated with Deep UV Immersion Lithography
title_full Metamaterial-Engineered Silicon Beam Splitter Fabricated with Deep UV Immersion Lithography
title_fullStr Metamaterial-Engineered Silicon Beam Splitter Fabricated with Deep UV Immersion Lithography
title_full_unstemmed Metamaterial-Engineered Silicon Beam Splitter Fabricated with Deep UV Immersion Lithography
title_short Metamaterial-Engineered Silicon Beam Splitter Fabricated with Deep UV Immersion Lithography
title_sort metamaterial-engineered silicon beam splitter fabricated with deep uv immersion lithography
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8620797/
https://www.ncbi.nlm.nih.gov/pubmed/34835713
http://dx.doi.org/10.3390/nano11112949
work_keys_str_mv AT vakarinvladyslav metamaterialengineeredsiliconbeamsplitterfabricatedwithdeepuvimmersionlithography
AT melatidaniele metamaterialengineeredsiliconbeamsplitterfabricatedwithdeepuvimmersionlithography
AT dinhthithuyduong metamaterialengineeredsiliconbeamsplitterfabricatedwithdeepuvimmersionlithography
AT lerouxxavier metamaterialengineeredsiliconbeamsplitterfabricatedwithdeepuvimmersionlithography
AT kanwarrenkutking metamaterialengineeredsiliconbeamsplitterfabricatedwithdeepuvimmersionlithography
AT duprececilia metamaterialengineeredsiliconbeamsplitterfabricatedwithdeepuvimmersionlithography
AT szelagbertrand metamaterialengineeredsiliconbeamsplitterfabricatedwithdeepuvimmersionlithography
AT monfraystephane metamaterialengineeredsiliconbeamsplitterfabricatedwithdeepuvimmersionlithography
AT boeuffrederic metamaterialengineeredsiliconbeamsplitterfabricatedwithdeepuvimmersionlithography
AT chebenpavel metamaterialengineeredsiliconbeamsplitterfabricatedwithdeepuvimmersionlithography
AT cassaneric metamaterialengineeredsiliconbeamsplitterfabricatedwithdeepuvimmersionlithography
AT marrismorinidelphine metamaterialengineeredsiliconbeamsplitterfabricatedwithdeepuvimmersionlithography
AT vivienlaurent metamaterialengineeredsiliconbeamsplitterfabricatedwithdeepuvimmersionlithography
AT alonsoramoscarlosalberto metamaterialengineeredsiliconbeamsplitterfabricatedwithdeepuvimmersionlithography