Cargando…
Block-Based Compression and Corresponding Hardware Circuits for Sparse Activations
In a CNN (convolutional neural network) accelerator, to reduce memory traffic and power consumption, there is a need to exploit the sparsity of activation values. Therefore, some research efforts have been paid to skip ineffectual computations (i.e., multiplications by zero). Different from previous...
Autores principales: | Weng, Yui-Kai, Huang, Shih-Hsu, Kao, Hsu-Yu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8622461/ https://www.ncbi.nlm.nih.gov/pubmed/34833543 http://dx.doi.org/10.3390/s21227468 |
Ejemplares similares
-
Compressed-Sensing Reconstruction Based on Block Sparse Bayesian Learning in Bearing-Condition Monitoring
por: Sun, Jiedi, et al.
Publicado: (2017) -
Compressed sensing & sparse filtering
por: Carmi, Avishy Y, et al.
Publicado: (2013) -
Fast sparse fractal image compression
por: Wang, Jianji, et al.
Publicado: (2017) -
Compressive Sensing Based Design of Sparse Tripole Arrays
por: Hawes, Matthew, et al.
Publicado: (2015) -
Compression Reconstruction and Fault Diagnosis of Diesel Engine Vibration Signal Based on Optimizing Block Sparse Bayesian Learning
por: Bai, Huajun, et al.
Publicado: (2022)