Cargando…
On Architecture Selection for Linear Inverse Problems with Untrained Neural Networks
In recent years, neural network based image priors have been shown to be highly effective for linear inverse problems, often significantly outperforming conventional methods that are based on sparsity and related notions. While pre-trained generative models are perhaps the most common, it has additi...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8623203/ https://www.ncbi.nlm.nih.gov/pubmed/34828179 http://dx.doi.org/10.3390/e23111481 |