Cargando…
On Architecture Selection for Linear Inverse Problems with Untrained Neural Networks
In recent years, neural network based image priors have been shown to be highly effective for linear inverse problems, often significantly outperforming conventional methods that are based on sparsity and related notions. While pre-trained generative models are perhaps the most common, it has additi...
Autores principales: | Sun, Yang, Zhao, Hangdong, Scarlett, Jonathan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8623203/ https://www.ncbi.nlm.nih.gov/pubmed/34828179 http://dx.doi.org/10.3390/e23111481 |
Ejemplares similares
-
Phase imaging with an untrained neural network
por: Wang, Fei, et al.
Publicado: (2020) -
Face detection in untrained deep neural networks
por: Baek, Seungdae, et al.
Publicado: (2021) -
Visual number sense in untrained deep neural networks
por: Kim, Gwangsu, et al.
Publicado: (2021) -
Recognition ability of untrained neural networks to symbolic numbers
por: Zhou, Yiwei, et al.
Publicado: (2022) -
Invariance of object detection in untrained deep neural networks
por: Cheon, Jeonghwan, et al.
Publicado: (2022)