Cargando…

Influence of Alloying Elements on the Mechanical Properties of Anodized Aluminum and on the Adhesion of Copper Metallization

The active development of the power electronics market and a constant increase in the prices of components require new materials and approaches, including a power module packaging technology. The use of aluminum instead of copper in the power module baseplate is an interesting and promising solution...

Descripción completa

Detalles Bibliográficos
Autores principales: Medvedev, Oleg S., Alyasova, Ekaterina E., Besprozvannaya, Rona E., Gadzhiev, Asadula A., Krivova, Veronika V., Kondratev, Andrey S., Kim, Artem E., Novikov, Pavel A., Popovich, Anatoliy A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8624961/
https://www.ncbi.nlm.nih.gov/pubmed/34832426
http://dx.doi.org/10.3390/ma14227028
Descripción
Sumario:The active development of the power electronics market and a constant increase in the prices of components require new materials and approaches, including a power module packaging technology. The use of aluminum instead of copper in the power module baseplate is an interesting and promising solution. The insulated metal baseplate is one of the most extensively developed technologies nowadays. The object of this study is an insulated metal substrate based on anodized aluminum. The main goal of the article is the comparison of copper topology adhesion to an anodized aluminum oxide layer formed on different aluminum alloys with aluminum content of at least 99.3 wt %. Peel test and pull-off adhesions showed a twofold difference for both aluminum alloys. The high ordered defect-free anodized alumina formed on alloys with copper content of 0.06 wt % had a mean pull-off adhesion of 27 N/mm(2) and hardness of 489 HV. In the case of the alloy with copper content of around 0.15 wt %, it had hardness of 295 HV and a mean pull-off adhesion of 12 N/mm(2). The results of our microstructure investigation showed that anodized alumina based on alloys with copper content of around 0.15 wt % is fragile due to spherical holes. Summing up the results, it can be concluded that not all initial impurities are critical for anodized alumina, but some, specifically copper, dramatically decreased the mechanical properties of anodized alumina.