Cargando…
On the Non-Adaptive Zero-Error Capacity of the Discrete Memoryless Two-Way Channel †
We study the problem of communicating over a discrete memoryless two-way channel using non-adaptive schemes, under a zero probability of error criterion. We derive single-letter inner and outer bounds for the zero-error capacity region, based on random coding, linear programming, linear codes, and t...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8625502/ https://www.ncbi.nlm.nih.gov/pubmed/34828216 http://dx.doi.org/10.3390/e23111518 |
Sumario: | We study the problem of communicating over a discrete memoryless two-way channel using non-adaptive schemes, under a zero probability of error criterion. We derive single-letter inner and outer bounds for the zero-error capacity region, based on random coding, linear programming, linear codes, and the asymptotic spectrum of graphs. Among others, we provide a single-letter outer bound based on a combination of Shannon’s vanishing-error capacity region and a two-way analogue of the linear programming bound for point-to-point channels, which, in contrast to the one-way case, is generally better than both. Moreover, we establish an outer bound for the zero-error capacity region of a two-way channel via the asymptotic spectrum of graphs, and show that this bound can be achieved in certain cases. |
---|