Cargando…

Exercise downregulates HIPK2 and HIPK2 inhibition protects against myocardial infarction

BACKGROUND: Exercise can protect myocardial infarction (MI) and downregulate cardiac Homeodomain-Interacting Protein Kinase 2 (HIPK2). However, the role of HIPK2 in MI is unclear. METHODS: HIPK2(–/–) mice and miR-222(–/–) rats, HIPK2 inhibitor (PKI1H) and adeno-associated virus serotype 9 (AAV9) car...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhou, Qiulian, Deng, Jiali, Yao, Jianhua, Song, Jiaxin, Meng, Danni, Zhu, Yujiao, Xu, Minjun, Liang, Yajun, Xu, Jiahong, Sluijter, Joost PG, Xiao, Junjie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8626841/
https://www.ncbi.nlm.nih.gov/pubmed/34837851
http://dx.doi.org/10.1016/j.ebiom.2021.103713
_version_ 1784606735915286528
author Zhou, Qiulian
Deng, Jiali
Yao, Jianhua
Song, Jiaxin
Meng, Danni
Zhu, Yujiao
Xu, Minjun
Liang, Yajun
Xu, Jiahong
Sluijter, Joost PG
Xiao, Junjie
author_facet Zhou, Qiulian
Deng, Jiali
Yao, Jianhua
Song, Jiaxin
Meng, Danni
Zhu, Yujiao
Xu, Minjun
Liang, Yajun
Xu, Jiahong
Sluijter, Joost PG
Xiao, Junjie
author_sort Zhou, Qiulian
collection PubMed
description BACKGROUND: Exercise can protect myocardial infarction (MI) and downregulate cardiac Homeodomain-Interacting Protein Kinase 2 (HIPK2). However, the role of HIPK2 in MI is unclear. METHODS: HIPK2(–/–) mice and miR-222(–/–) rats, HIPK2 inhibitor (PKI1H) and adeno-associated virus serotype 9 (AAV9) carrying miR-222 were applied in the study. Animals were subjected to running, swimming, acute MI or post-MI remodeling. HIPK2 inhibition and P53 activator were used in neonatal rat cardiomyocytes (NRCMs) and human embryonic stem cell-derived cardiomyocytes (hESC-CMs) subjected to oxygen glucose deprivation/reperfusion (OGD/R). Serum miR-222 levels were analyzed in healthy people and MI patients that were survival or readmitted to the hospital and/or died. FINDINGS: Cardiac HIPK2 protein levels were reduced by exercise while increased in MI. In vitro, HIPK2 suppression by lentiviral vectors or inhibitor prevented apoptosis induced by OGD/R in NRCMs and hESC-CMs. HIPK2 inhibitor-treated mice and HIPK2(–/–) mice reduced infarct size after acute MI, and preserved cardiac function in MI remodeling. Mechanistically, protective effect against apoptosis by HIPK2 suppression was reversed by P53 activators. Furthermore, increasing levels of miR-222, targeting HIPK2, protected post-MI cardiac dysfunction, whereas cardiac dysfunction post-MI was aggravated in miR-222(–/–) rats. Moreover, serum miR-222 levels were significantly reduced in MI patients, as well as in MI patients that were readmitted to the hospital and/or died compared to those not. INTERPRETATION: Exercise-induced HIPK2 suppression attenuates cardiomyocytes apoptosis and protects MI by decreasing P-P53. Inhibition of HIPK2 represents a potential novel therapeutic intervention for MI. FUNDING: This work was supported by the grants from National Key Research and Development Project (2018YFE0113500 to JJ Xiao), National Natural Science Foundation of China (82020108002, 81722008, and 81911540486 to JJ Xiao, 81400647 to MJ Xu, 81800265 to YJ Liang), Innovation Program of Shanghai Municipal Education Commission (2017-01-07-00-09-E00042 to JJ Xiao), the grant from Science and Technology Commission of Shanghai Municipality (18410722200 and 17010500100 to JJ Xiao), the “Dawn” Program of Shanghai Education Commission (19SG34 to JJ Xiao), Shanghai Sailing Program (21YF1413200 to QL Zhou). JS is supported by Horizon2020 ERC-2016-COG EVICARE (725229).
format Online
Article
Text
id pubmed-8626841
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-86268412021-12-02 Exercise downregulates HIPK2 and HIPK2 inhibition protects against myocardial infarction Zhou, Qiulian Deng, Jiali Yao, Jianhua Song, Jiaxin Meng, Danni Zhu, Yujiao Xu, Minjun Liang, Yajun Xu, Jiahong Sluijter, Joost PG Xiao, Junjie EBioMedicine Research paper BACKGROUND: Exercise can protect myocardial infarction (MI) and downregulate cardiac Homeodomain-Interacting Protein Kinase 2 (HIPK2). However, the role of HIPK2 in MI is unclear. METHODS: HIPK2(–/–) mice and miR-222(–/–) rats, HIPK2 inhibitor (PKI1H) and adeno-associated virus serotype 9 (AAV9) carrying miR-222 were applied in the study. Animals were subjected to running, swimming, acute MI or post-MI remodeling. HIPK2 inhibition and P53 activator were used in neonatal rat cardiomyocytes (NRCMs) and human embryonic stem cell-derived cardiomyocytes (hESC-CMs) subjected to oxygen glucose deprivation/reperfusion (OGD/R). Serum miR-222 levels were analyzed in healthy people and MI patients that were survival or readmitted to the hospital and/or died. FINDINGS: Cardiac HIPK2 protein levels were reduced by exercise while increased in MI. In vitro, HIPK2 suppression by lentiviral vectors or inhibitor prevented apoptosis induced by OGD/R in NRCMs and hESC-CMs. HIPK2 inhibitor-treated mice and HIPK2(–/–) mice reduced infarct size after acute MI, and preserved cardiac function in MI remodeling. Mechanistically, protective effect against apoptosis by HIPK2 suppression was reversed by P53 activators. Furthermore, increasing levels of miR-222, targeting HIPK2, protected post-MI cardiac dysfunction, whereas cardiac dysfunction post-MI was aggravated in miR-222(–/–) rats. Moreover, serum miR-222 levels were significantly reduced in MI patients, as well as in MI patients that were readmitted to the hospital and/or died compared to those not. INTERPRETATION: Exercise-induced HIPK2 suppression attenuates cardiomyocytes apoptosis and protects MI by decreasing P-P53. Inhibition of HIPK2 represents a potential novel therapeutic intervention for MI. FUNDING: This work was supported by the grants from National Key Research and Development Project (2018YFE0113500 to JJ Xiao), National Natural Science Foundation of China (82020108002, 81722008, and 81911540486 to JJ Xiao, 81400647 to MJ Xu, 81800265 to YJ Liang), Innovation Program of Shanghai Municipal Education Commission (2017-01-07-00-09-E00042 to JJ Xiao), the grant from Science and Technology Commission of Shanghai Municipality (18410722200 and 17010500100 to JJ Xiao), the “Dawn” Program of Shanghai Education Commission (19SG34 to JJ Xiao), Shanghai Sailing Program (21YF1413200 to QL Zhou). JS is supported by Horizon2020 ERC-2016-COG EVICARE (725229). Elsevier 2021-11-24 /pmc/articles/PMC8626841/ /pubmed/34837851 http://dx.doi.org/10.1016/j.ebiom.2021.103713 Text en © 2021 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Research paper
Zhou, Qiulian
Deng, Jiali
Yao, Jianhua
Song, Jiaxin
Meng, Danni
Zhu, Yujiao
Xu, Minjun
Liang, Yajun
Xu, Jiahong
Sluijter, Joost PG
Xiao, Junjie
Exercise downregulates HIPK2 and HIPK2 inhibition protects against myocardial infarction
title Exercise downregulates HIPK2 and HIPK2 inhibition protects against myocardial infarction
title_full Exercise downregulates HIPK2 and HIPK2 inhibition protects against myocardial infarction
title_fullStr Exercise downregulates HIPK2 and HIPK2 inhibition protects against myocardial infarction
title_full_unstemmed Exercise downregulates HIPK2 and HIPK2 inhibition protects against myocardial infarction
title_short Exercise downregulates HIPK2 and HIPK2 inhibition protects against myocardial infarction
title_sort exercise downregulates hipk2 and hipk2 inhibition protects against myocardial infarction
topic Research paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8626841/
https://www.ncbi.nlm.nih.gov/pubmed/34837851
http://dx.doi.org/10.1016/j.ebiom.2021.103713
work_keys_str_mv AT zhouqiulian exercisedownregulateshipk2andhipk2inhibitionprotectsagainstmyocardialinfarction
AT dengjiali exercisedownregulateshipk2andhipk2inhibitionprotectsagainstmyocardialinfarction
AT yaojianhua exercisedownregulateshipk2andhipk2inhibitionprotectsagainstmyocardialinfarction
AT songjiaxin exercisedownregulateshipk2andhipk2inhibitionprotectsagainstmyocardialinfarction
AT mengdanni exercisedownregulateshipk2andhipk2inhibitionprotectsagainstmyocardialinfarction
AT zhuyujiao exercisedownregulateshipk2andhipk2inhibitionprotectsagainstmyocardialinfarction
AT xuminjun exercisedownregulateshipk2andhipk2inhibitionprotectsagainstmyocardialinfarction
AT liangyajun exercisedownregulateshipk2andhipk2inhibitionprotectsagainstmyocardialinfarction
AT xujiahong exercisedownregulateshipk2andhipk2inhibitionprotectsagainstmyocardialinfarction
AT sluijterjoostpg exercisedownregulateshipk2andhipk2inhibitionprotectsagainstmyocardialinfarction
AT xiaojunjie exercisedownregulateshipk2andhipk2inhibitionprotectsagainstmyocardialinfarction