Cargando…

Palmitic acid causes increased dihydroceramide levels when desaturase expression is directly silenced or indirectly lowered by silencing AdipoR2

BACKGROUND: AdipoR1 and AdipoR2 (AdipoRs) are plasma membrane proteins often considered to act as adiponectin receptors with a ceramidase activity. Additionally, the AdipoRs and their yeast and C. elegans orthologs are emerging as membrane homeostasis regulators that counter membrane rigidification...

Descripción completa

Detalles Bibliográficos
Autores principales: Ruiz, Mario, Henricsson, Marcus, Borén, Jan, Pilon, Marc
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8627610/
https://www.ncbi.nlm.nih.gov/pubmed/34839823
http://dx.doi.org/10.1186/s12944-021-01600-y
Descripción
Sumario:BACKGROUND: AdipoR1 and AdipoR2 (AdipoRs) are plasma membrane proteins often considered to act as adiponectin receptors with a ceramidase activity. Additionally, the AdipoRs and their yeast and C. elegans orthologs are emerging as membrane homeostasis regulators that counter membrane rigidification by promoting fatty acid desaturation and incorporation of unsaturated fatty acids into phospholipids, thus restoring fluidity. METHODS: Using cultured cells, the effects of AdipoR silencing or over-expression on the levels and composition of several sphingolipid classes were examined. RESULTS: AdipoR2 silencing in the presence of exogenous palmitic acid potently causes increased levels of dihydroceramides, a ceramide precursor in the de novo ceramide synthesis pathway. Conversely, AdipoR2 over-expression caused a depletion of dihydroceramides. CONCLUSIONS: The results are consistent with AdipoR2 silencing leading to increased intracellular supply of palmitic acid that in turn leads to increased dihydroceramide synthesis via the rate-limiting serine palmitoyl transferase step. In agreement with this model, inhibiting the desaturase SCD or SREBF1/2 (positive regulators of SCD) also causes a strong increase in dihydroceramide levels. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12944-021-01600-y.