Cargando…
ScLRTC: imputation for single-cell RNA-seq data via low-rank tensor completion
BACKGROUND: With single-cell RNA sequencing (scRNA-seq) methods, gene expression patterns at the single-cell resolution can be revealed. But as impacted by current technical defects, dropout events in scRNA-seq lead to missing data and noise in the gene-cell expression matrix and adversely affect do...
Autores principales: | Pan, Xiutao, Li, Zhong, Qin, Shengwei, Yu, Minzhe, Hu, Hang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8628418/ https://www.ncbi.nlm.nih.gov/pubmed/34844559 http://dx.doi.org/10.1186/s12864-021-08101-3 |
Ejemplares similares
-
An accurate and robust imputation method scImpute for single-cell RNA-seq data
por: Li, Wei Vivian, et al.
Publicado: (2018) -
Missing Value Imputation With Low-Rank Matrix Completion in Single-Cell RNA-Seq Data by Considering Cell Heterogeneity
por: Huang, Meng, et al.
Publicado: (2022) -
scGCL: an imputation method for scRNA-seq data based on graph contrastive learning
por: Xiong, Zehao, et al.
Publicado: (2023) -
SCC: an accurate imputation method for scRNA-seq dropouts based on a mixture model
por: Zheng, Yan, et al.
Publicado: (2021) -
Traffic Speed Data Imputation Method Based on Tensor Completion
por: Ran, Bin, et al.
Publicado: (2015)