Cargando…
Hindsight Experience Replay Improves Reinforcement Learning for Control of a MIMO Musculoskeletal Model of the Human Arm
High-level spinal cord injuries often result in paralysis of all four limbs, leading to decreased patient independence and quality of life. Coordinated functional electrical stimulation (FES) of paralyzed muscles can be used to restore some motor function in the upper extremity. To coordinate functi...
Autores principales: | Crowder, Douglas C., Abreu, Jessica, Kirsch, Robert F. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8630802/ https://www.ncbi.nlm.nih.gov/pubmed/33999822 http://dx.doi.org/10.1109/TNSRE.2021.3081056 |
Ejemplares similares
-
Path Planning for Multi-Arm Manipulators Using Deep Reinforcement Learning: Soft Actor–Critic with Hindsight Experience Replay
por: Prianto, Evan, et al.
Publicado: (2020) -
Offline replay supports planning in human reinforcement learning
por: Momennejad, Ida, et al.
Publicado: (2018) -
Model-Based and Model-Free Replay Mechanisms for Reinforcement Learning in Neurorobotics
por: Massi, Elisa, et al.
Publicado: (2022) -
Map-based experience replay: a memory-efficient solution to catastrophic forgetting in reinforcement learning
por: Hafez, Muhammad Burhan, et al.
Publicado: (2023) -
Presidential Address: 2020 is Hindsight
por: Dietz, Jill R.
Publicado: (2021)