Cargando…
Common Methods for Handling Missing Data in Marginal Structural Models: What Works and Why
Marginal structural models (MSMs) are commonly used to estimate causal intervention effects in longitudinal nonrandomized studies. A common challenge when using MSMs to analyze observational studies is incomplete confounder data, where a poorly informed analysis method will lead to biased estimates...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8631064/ https://www.ncbi.nlm.nih.gov/pubmed/33057574 http://dx.doi.org/10.1093/aje/kwaa225 |