Cargando…
Common Methods for Handling Missing Data in Marginal Structural Models: What Works and Why
Marginal structural models (MSMs) are commonly used to estimate causal intervention effects in longitudinal nonrandomized studies. A common challenge when using MSMs to analyze observational studies is incomplete confounder data, where a poorly informed analysis method will lead to biased estimates...
Autores principales: | Leyrat, Clémence, Carpenter, James R, Bailly, Sébastien, Williamson, Elizabeth J |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8631064/ https://www.ncbi.nlm.nih.gov/pubmed/33057574 http://dx.doi.org/10.1093/aje/kwaa225 |
Ejemplares similares
-
Methods for Dealing With Missing Covariate Data in Epigenome-Wide Association Studies
por: Mills, Harriet L, et al.
Publicado: (2019) -
Comparison of Random Forest and Parametric Imputation Models for Imputing Missing Data Using MICE: A CALIBER Study
por: Shah, Anoop D., et al.
Publicado: (2014) -
Canonical Causal Diagrams to Guide the Treatment of Missing Data in Epidemiologic Studies
por: Moreno-Betancur, Margarita, et al.
Publicado: (2018) -
Handling of missing data with multiple imputation in observational studies that address causal questions: protocol for a scoping review
por: Mainzer, Rheanna, et al.
Publicado: (2023) -
A framework for handling missing accelerometer outcome data in trials
por: Tackney, Mia S., et al.
Publicado: (2021)