Cargando…
Structure-based deep learning for binding site detection in nucleic acid macromolecules
Structure-based drug design (SBDD) targeting nucleic acid macromolecules, particularly RNA, is a gaining momentum research direction that already resulted in several FDA-approved compounds. Similar to proteins, one of the critical components in SBDD for RNA is the correct identification of the bindi...
Autores principales: | Kozlovskii, Igor, Popov, Petr |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8633674/ https://www.ncbi.nlm.nih.gov/pubmed/34859211 http://dx.doi.org/10.1093/nargab/lqab111 |
Ejemplares similares
-
Spatiotemporal identification of druggable binding sites using deep learning
por: Kozlovskii, Igor, et al.
Publicado: (2020) -
mmCSM-NA: accurately predicting effects of single and multiple mutations on protein–nucleic acid binding affinity
por: Nguyen, Thanh Binh, et al.
Publicado: (2021) -
Inferring structural and dynamical properties of gene networks from data with deep learning
por: Chen, Feng, et al.
Publicado: (2022) -
DeepMicrobes: taxonomic classification for metagenomics with deep learning
por: Liang, Qiaoxing, et al.
Publicado: (2020) -
Deep conservation of ribosome stall sites across RNA processing genes
por: Chyżyńska, Katarzyna, et al.
Publicado: (2021)