Cargando…
Identifying sources of metabolomic diversity and reconfiguration in peach fruit: taking notes for quality fruit improvement
The metabolomic content determines many of the important features of a fruit, such as its taste, flavor, color, nutritional value, and abiotic or biotic resistance. Peach (Prunus persica (L.) Batsch) is one of the best genetically characterized species used as a model for Rosaceae, the drupes of whi...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8634865/ https://www.ncbi.nlm.nih.gov/pubmed/34176215 http://dx.doi.org/10.1002/2211-5463.13233 |
Sumario: | The metabolomic content determines many of the important features of a fruit, such as its taste, flavor, color, nutritional value, and abiotic or biotic resistance. Peach (Prunus persica (L.) Batsch) is one of the best genetically characterized species used as a model for Rosaceae, the drupes of which are a source of minerals, vitamins, fiber, and antioxidant compounds for healthy diets around the world. During the last few years, a great advance in the analysis of the metabolic diversity and reconfiguration in different peach varieties in response to developmental and environmental factors has occurred. These studies have shown that the great phenotypic diversity among different peach varieties is correlated with differential metabolomic content. Besides, the fruit metabolome of each peach variety is not static; on the contrary, it is drastically configured in response to both developmental and environmental signals, and moreover, it was found that these metabolic reconfigurations are also variety dependent. In the present review, the main sources of metabolic diversity and conditions that induce modifications in the peach fruit metabolome are summarized. It is postulated that comparison of the metabolic reconfigurations that take place among the fruits from different varieties may help us better understand peach fruit metabolism and their key drivers, which in turn may aid in the future design of high‐quality peach fruits. |
---|