Cargando…
A unified drug–target interaction prediction framework based on knowledge graph and recommendation system
Prediction of drug-target interactions (DTI) plays a vital role in drug development in various areas, such as virtual screening, drug repurposing and identification of potential drug side effects. Despite extensive efforts have been invested in perfecting DTI prediction, existing methods still suffe...
Autores principales: | Ye, Qing, Hsieh, Chang-Yu, Yang, Ziyi, Kang, Yu, Chen, Jiming, Cao, Dongsheng, He, Shibo, Hou, Tingjun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8635420/ https://www.ncbi.nlm.nih.gov/pubmed/34811351 http://dx.doi.org/10.1038/s41467-021-27137-3 |
Ejemplares similares
-
Could graph neural networks learn better molecular representation for drug discovery? A comparison study of descriptor-based and graph-based models
por: Jiang, Dejun, et al.
Publicado: (2021) -
Chemistry-intuitive explanation of graph neural networks for molecular property prediction with substructure masking
por: Wu, Zhenxing, et al.
Publicado: (2023) -
Kinome-wide polypharmacology profiling of small molecules by multi-task graph isomorphism network approach
por: Bao, Lingjie, et al.
Publicado: (2023) -
MetalProGNet: a structure-based deep graph model for metalloprotein–ligand interaction predictions
por: Jiang, Dejun, et al.
Publicado: (2023) -
Iterative heterogeneous graph learning for knowledge graph-based recommendation
por: Liu, Tieyuan, et al.
Publicado: (2023)