Cargando…
Genetic, cellular, and structural characterization of the membrane potential-dependent cell-penetrating peptide translocation pore
Cell-penetrating peptides (CPPs) allow intracellular delivery of bioactive cargo molecules. The mechanisms allowing CPPs to enter cells are ill-defined. Using a CRISPR/Cas9-based screening, we discovered that KCNQ5, KCNN4, and KCNK5 potassium channels positively modulate cationic CPP direct transloc...
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8639150/ https://www.ncbi.nlm.nih.gov/pubmed/34713805 http://dx.doi.org/10.7554/eLife.69832 |
_version_ | 1784609092305682432 |
---|---|
author | Trofimenko, Evgeniya Grasso, Gianvito Heulot, Mathieu Chevalier, Nadja Deriu, Marco A Dubuis, Gilles Arribat, Yoan Serulla, Marc Michel, Sebastien Vantomme, Gil Ory, Florine Dam, Linh Chi Puyal, Julien Amati, Francesca Lüthi, Anita Danani, Andrea Widmann, Christian |
author_facet | Trofimenko, Evgeniya Grasso, Gianvito Heulot, Mathieu Chevalier, Nadja Deriu, Marco A Dubuis, Gilles Arribat, Yoan Serulla, Marc Michel, Sebastien Vantomme, Gil Ory, Florine Dam, Linh Chi Puyal, Julien Amati, Francesca Lüthi, Anita Danani, Andrea Widmann, Christian |
author_sort | Trofimenko, Evgeniya |
collection | PubMed |
description | Cell-penetrating peptides (CPPs) allow intracellular delivery of bioactive cargo molecules. The mechanisms allowing CPPs to enter cells are ill-defined. Using a CRISPR/Cas9-based screening, we discovered that KCNQ5, KCNN4, and KCNK5 potassium channels positively modulate cationic CPP direct translocation into cells by decreasing the transmembrane potential (V(m)). These findings provide the first unbiased genetic validation of the role of V(m) in CPP translocation in cells. In silico modeling and live cell experiments indicate that CPPs, by bringing positive charges on the outer surface of the plasma membrane, decrease the V(m) to very low values (–150 mV or less), a situation we have coined megapolarization that then triggers formation of water pores used by CPPs to enter cells. Megapolarization lowers the free energy barrier associated with CPP membrane translocation. Using dyes of varying dimensions in CPP co-entry experiments, the diameter of the water pores in living cells was estimated to be 2 (–5) nm, in accordance with the structural characteristics of the pores predicted by in silico modeling. Pharmacological manipulation to lower transmembrane potential boosted CPP cellular internalization in zebrafish and mouse models. Besides identifying the first proteins that regulate CPP translocation, this work characterized key mechanistic steps used by CPPs to cross cellular membranes. This opens the ground for strategies aimed at improving the ability of cells to capture CPP-linked cargos in vitro and in vivo. |
format | Online Article Text |
id | pubmed-8639150 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | eLife Sciences Publications, Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-86391502021-12-03 Genetic, cellular, and structural characterization of the membrane potential-dependent cell-penetrating peptide translocation pore Trofimenko, Evgeniya Grasso, Gianvito Heulot, Mathieu Chevalier, Nadja Deriu, Marco A Dubuis, Gilles Arribat, Yoan Serulla, Marc Michel, Sebastien Vantomme, Gil Ory, Florine Dam, Linh Chi Puyal, Julien Amati, Francesca Lüthi, Anita Danani, Andrea Widmann, Christian eLife Cell Biology Cell-penetrating peptides (CPPs) allow intracellular delivery of bioactive cargo molecules. The mechanisms allowing CPPs to enter cells are ill-defined. Using a CRISPR/Cas9-based screening, we discovered that KCNQ5, KCNN4, and KCNK5 potassium channels positively modulate cationic CPP direct translocation into cells by decreasing the transmembrane potential (V(m)). These findings provide the first unbiased genetic validation of the role of V(m) in CPP translocation in cells. In silico modeling and live cell experiments indicate that CPPs, by bringing positive charges on the outer surface of the plasma membrane, decrease the V(m) to very low values (–150 mV or less), a situation we have coined megapolarization that then triggers formation of water pores used by CPPs to enter cells. Megapolarization lowers the free energy barrier associated with CPP membrane translocation. Using dyes of varying dimensions in CPP co-entry experiments, the diameter of the water pores in living cells was estimated to be 2 (–5) nm, in accordance with the structural characteristics of the pores predicted by in silico modeling. Pharmacological manipulation to lower transmembrane potential boosted CPP cellular internalization in zebrafish and mouse models. Besides identifying the first proteins that regulate CPP translocation, this work characterized key mechanistic steps used by CPPs to cross cellular membranes. This opens the ground for strategies aimed at improving the ability of cells to capture CPP-linked cargos in vitro and in vivo. eLife Sciences Publications, Ltd 2021-10-29 /pmc/articles/PMC8639150/ /pubmed/34713805 http://dx.doi.org/10.7554/eLife.69832 Text en © 2021, Trofimenko et al https://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited. |
spellingShingle | Cell Biology Trofimenko, Evgeniya Grasso, Gianvito Heulot, Mathieu Chevalier, Nadja Deriu, Marco A Dubuis, Gilles Arribat, Yoan Serulla, Marc Michel, Sebastien Vantomme, Gil Ory, Florine Dam, Linh Chi Puyal, Julien Amati, Francesca Lüthi, Anita Danani, Andrea Widmann, Christian Genetic, cellular, and structural characterization of the membrane potential-dependent cell-penetrating peptide translocation pore |
title | Genetic, cellular, and structural characterization of the membrane potential-dependent cell-penetrating peptide translocation pore |
title_full | Genetic, cellular, and structural characterization of the membrane potential-dependent cell-penetrating peptide translocation pore |
title_fullStr | Genetic, cellular, and structural characterization of the membrane potential-dependent cell-penetrating peptide translocation pore |
title_full_unstemmed | Genetic, cellular, and structural characterization of the membrane potential-dependent cell-penetrating peptide translocation pore |
title_short | Genetic, cellular, and structural characterization of the membrane potential-dependent cell-penetrating peptide translocation pore |
title_sort | genetic, cellular, and structural characterization of the membrane potential-dependent cell-penetrating peptide translocation pore |
topic | Cell Biology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8639150/ https://www.ncbi.nlm.nih.gov/pubmed/34713805 http://dx.doi.org/10.7554/eLife.69832 |
work_keys_str_mv | AT trofimenkoevgeniya geneticcellularandstructuralcharacterizationofthemembranepotentialdependentcellpenetratingpeptidetranslocationpore AT grassogianvito geneticcellularandstructuralcharacterizationofthemembranepotentialdependentcellpenetratingpeptidetranslocationpore AT heulotmathieu geneticcellularandstructuralcharacterizationofthemembranepotentialdependentcellpenetratingpeptidetranslocationpore AT chevaliernadja geneticcellularandstructuralcharacterizationofthemembranepotentialdependentcellpenetratingpeptidetranslocationpore AT deriumarcoa geneticcellularandstructuralcharacterizationofthemembranepotentialdependentcellpenetratingpeptidetranslocationpore AT dubuisgilles geneticcellularandstructuralcharacterizationofthemembranepotentialdependentcellpenetratingpeptidetranslocationpore AT arribatyoan geneticcellularandstructuralcharacterizationofthemembranepotentialdependentcellpenetratingpeptidetranslocationpore AT serullamarc geneticcellularandstructuralcharacterizationofthemembranepotentialdependentcellpenetratingpeptidetranslocationpore AT michelsebastien geneticcellularandstructuralcharacterizationofthemembranepotentialdependentcellpenetratingpeptidetranslocationpore AT vantommegil geneticcellularandstructuralcharacterizationofthemembranepotentialdependentcellpenetratingpeptidetranslocationpore AT oryflorine geneticcellularandstructuralcharacterizationofthemembranepotentialdependentcellpenetratingpeptidetranslocationpore AT damlinhchi geneticcellularandstructuralcharacterizationofthemembranepotentialdependentcellpenetratingpeptidetranslocationpore AT puyaljulien geneticcellularandstructuralcharacterizationofthemembranepotentialdependentcellpenetratingpeptidetranslocationpore AT amatifrancesca geneticcellularandstructuralcharacterizationofthemembranepotentialdependentcellpenetratingpeptidetranslocationpore AT luthianita geneticcellularandstructuralcharacterizationofthemembranepotentialdependentcellpenetratingpeptidetranslocationpore AT dananiandrea geneticcellularandstructuralcharacterizationofthemembranepotentialdependentcellpenetratingpeptidetranslocationpore AT widmannchristian geneticcellularandstructuralcharacterizationofthemembranepotentialdependentcellpenetratingpeptidetranslocationpore |