Cargando…

Genetic, cellular, and structural characterization of the membrane potential-dependent cell-penetrating peptide translocation pore

Cell-penetrating peptides (CPPs) allow intracellular delivery of bioactive cargo molecules. The mechanisms allowing CPPs to enter cells are ill-defined. Using a CRISPR/Cas9-based screening, we discovered that KCNQ5, KCNN4, and KCNK5 potassium channels positively modulate cationic CPP direct transloc...

Descripción completa

Detalles Bibliográficos
Autores principales: Trofimenko, Evgeniya, Grasso, Gianvito, Heulot, Mathieu, Chevalier, Nadja, Deriu, Marco A, Dubuis, Gilles, Arribat, Yoan, Serulla, Marc, Michel, Sebastien, Vantomme, Gil, Ory, Florine, Dam, Linh Chi, Puyal, Julien, Amati, Francesca, Lüthi, Anita, Danani, Andrea, Widmann, Christian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: eLife Sciences Publications, Ltd 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8639150/
https://www.ncbi.nlm.nih.gov/pubmed/34713805
http://dx.doi.org/10.7554/eLife.69832
_version_ 1784609092305682432
author Trofimenko, Evgeniya
Grasso, Gianvito
Heulot, Mathieu
Chevalier, Nadja
Deriu, Marco A
Dubuis, Gilles
Arribat, Yoan
Serulla, Marc
Michel, Sebastien
Vantomme, Gil
Ory, Florine
Dam, Linh Chi
Puyal, Julien
Amati, Francesca
Lüthi, Anita
Danani, Andrea
Widmann, Christian
author_facet Trofimenko, Evgeniya
Grasso, Gianvito
Heulot, Mathieu
Chevalier, Nadja
Deriu, Marco A
Dubuis, Gilles
Arribat, Yoan
Serulla, Marc
Michel, Sebastien
Vantomme, Gil
Ory, Florine
Dam, Linh Chi
Puyal, Julien
Amati, Francesca
Lüthi, Anita
Danani, Andrea
Widmann, Christian
author_sort Trofimenko, Evgeniya
collection PubMed
description Cell-penetrating peptides (CPPs) allow intracellular delivery of bioactive cargo molecules. The mechanisms allowing CPPs to enter cells are ill-defined. Using a CRISPR/Cas9-based screening, we discovered that KCNQ5, KCNN4, and KCNK5 potassium channels positively modulate cationic CPP direct translocation into cells by decreasing the transmembrane potential (V(m)). These findings provide the first unbiased genetic validation of the role of V(m) in CPP translocation in cells. In silico modeling and live cell experiments indicate that CPPs, by bringing positive charges on the outer surface of the plasma membrane, decrease the V(m) to very low values (–150 mV or less), a situation we have coined megapolarization that then triggers formation of water pores used by CPPs to enter cells. Megapolarization lowers the free energy barrier associated with CPP membrane translocation. Using dyes of varying dimensions in CPP co-entry experiments, the diameter of the water pores in living cells was estimated to be 2 (–5) nm, in accordance with the structural characteristics of the pores predicted by in silico modeling. Pharmacological manipulation to lower transmembrane potential boosted CPP cellular internalization in zebrafish and mouse models. Besides identifying the first proteins that regulate CPP translocation, this work characterized key mechanistic steps used by CPPs to cross cellular membranes. This opens the ground for strategies aimed at improving the ability of cells to capture CPP-linked cargos in vitro and in vivo.
format Online
Article
Text
id pubmed-8639150
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher eLife Sciences Publications, Ltd
record_format MEDLINE/PubMed
spelling pubmed-86391502021-12-03 Genetic, cellular, and structural characterization of the membrane potential-dependent cell-penetrating peptide translocation pore Trofimenko, Evgeniya Grasso, Gianvito Heulot, Mathieu Chevalier, Nadja Deriu, Marco A Dubuis, Gilles Arribat, Yoan Serulla, Marc Michel, Sebastien Vantomme, Gil Ory, Florine Dam, Linh Chi Puyal, Julien Amati, Francesca Lüthi, Anita Danani, Andrea Widmann, Christian eLife Cell Biology Cell-penetrating peptides (CPPs) allow intracellular delivery of bioactive cargo molecules. The mechanisms allowing CPPs to enter cells are ill-defined. Using a CRISPR/Cas9-based screening, we discovered that KCNQ5, KCNN4, and KCNK5 potassium channels positively modulate cationic CPP direct translocation into cells by decreasing the transmembrane potential (V(m)). These findings provide the first unbiased genetic validation of the role of V(m) in CPP translocation in cells. In silico modeling and live cell experiments indicate that CPPs, by bringing positive charges on the outer surface of the plasma membrane, decrease the V(m) to very low values (–150 mV or less), a situation we have coined megapolarization that then triggers formation of water pores used by CPPs to enter cells. Megapolarization lowers the free energy barrier associated with CPP membrane translocation. Using dyes of varying dimensions in CPP co-entry experiments, the diameter of the water pores in living cells was estimated to be 2 (–5) nm, in accordance with the structural characteristics of the pores predicted by in silico modeling. Pharmacological manipulation to lower transmembrane potential boosted CPP cellular internalization in zebrafish and mouse models. Besides identifying the first proteins that regulate CPP translocation, this work characterized key mechanistic steps used by CPPs to cross cellular membranes. This opens the ground for strategies aimed at improving the ability of cells to capture CPP-linked cargos in vitro and in vivo. eLife Sciences Publications, Ltd 2021-10-29 /pmc/articles/PMC8639150/ /pubmed/34713805 http://dx.doi.org/10.7554/eLife.69832 Text en © 2021, Trofimenko et al https://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited.
spellingShingle Cell Biology
Trofimenko, Evgeniya
Grasso, Gianvito
Heulot, Mathieu
Chevalier, Nadja
Deriu, Marco A
Dubuis, Gilles
Arribat, Yoan
Serulla, Marc
Michel, Sebastien
Vantomme, Gil
Ory, Florine
Dam, Linh Chi
Puyal, Julien
Amati, Francesca
Lüthi, Anita
Danani, Andrea
Widmann, Christian
Genetic, cellular, and structural characterization of the membrane potential-dependent cell-penetrating peptide translocation pore
title Genetic, cellular, and structural characterization of the membrane potential-dependent cell-penetrating peptide translocation pore
title_full Genetic, cellular, and structural characterization of the membrane potential-dependent cell-penetrating peptide translocation pore
title_fullStr Genetic, cellular, and structural characterization of the membrane potential-dependent cell-penetrating peptide translocation pore
title_full_unstemmed Genetic, cellular, and structural characterization of the membrane potential-dependent cell-penetrating peptide translocation pore
title_short Genetic, cellular, and structural characterization of the membrane potential-dependent cell-penetrating peptide translocation pore
title_sort genetic, cellular, and structural characterization of the membrane potential-dependent cell-penetrating peptide translocation pore
topic Cell Biology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8639150/
https://www.ncbi.nlm.nih.gov/pubmed/34713805
http://dx.doi.org/10.7554/eLife.69832
work_keys_str_mv AT trofimenkoevgeniya geneticcellularandstructuralcharacterizationofthemembranepotentialdependentcellpenetratingpeptidetranslocationpore
AT grassogianvito geneticcellularandstructuralcharacterizationofthemembranepotentialdependentcellpenetratingpeptidetranslocationpore
AT heulotmathieu geneticcellularandstructuralcharacterizationofthemembranepotentialdependentcellpenetratingpeptidetranslocationpore
AT chevaliernadja geneticcellularandstructuralcharacterizationofthemembranepotentialdependentcellpenetratingpeptidetranslocationpore
AT deriumarcoa geneticcellularandstructuralcharacterizationofthemembranepotentialdependentcellpenetratingpeptidetranslocationpore
AT dubuisgilles geneticcellularandstructuralcharacterizationofthemembranepotentialdependentcellpenetratingpeptidetranslocationpore
AT arribatyoan geneticcellularandstructuralcharacterizationofthemembranepotentialdependentcellpenetratingpeptidetranslocationpore
AT serullamarc geneticcellularandstructuralcharacterizationofthemembranepotentialdependentcellpenetratingpeptidetranslocationpore
AT michelsebastien geneticcellularandstructuralcharacterizationofthemembranepotentialdependentcellpenetratingpeptidetranslocationpore
AT vantommegil geneticcellularandstructuralcharacterizationofthemembranepotentialdependentcellpenetratingpeptidetranslocationpore
AT oryflorine geneticcellularandstructuralcharacterizationofthemembranepotentialdependentcellpenetratingpeptidetranslocationpore
AT damlinhchi geneticcellularandstructuralcharacterizationofthemembranepotentialdependentcellpenetratingpeptidetranslocationpore
AT puyaljulien geneticcellularandstructuralcharacterizationofthemembranepotentialdependentcellpenetratingpeptidetranslocationpore
AT amatifrancesca geneticcellularandstructuralcharacterizationofthemembranepotentialdependentcellpenetratingpeptidetranslocationpore
AT luthianita geneticcellularandstructuralcharacterizationofthemembranepotentialdependentcellpenetratingpeptidetranslocationpore
AT dananiandrea geneticcellularandstructuralcharacterizationofthemembranepotentialdependentcellpenetratingpeptidetranslocationpore
AT widmannchristian geneticcellularandstructuralcharacterizationofthemembranepotentialdependentcellpenetratingpeptidetranslocationpore