Cargando…
Bruceine D inhibits HIF-1α-mediated glucose metabolism in hepatocellular carcinoma by blocking ICAT/β-catenin interaction
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths, characterized by highly hypoxic tumor microenvironment. Hypoxia-inducible factor-1α (HIF-1α) is a major regulator involved in cellular response to changes of oxygen levels, supporting the adaptation of tumor cells...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8642446/ https://www.ncbi.nlm.nih.gov/pubmed/34900531 http://dx.doi.org/10.1016/j.apsb.2021.05.009 |
Sumario: | Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths, characterized by highly hypoxic tumor microenvironment. Hypoxia-inducible factor-1α (HIF-1α) is a major regulator involved in cellular response to changes of oxygen levels, supporting the adaptation of tumor cells to hypoxia. Bruceine D (BD) is an isolated natural quassinoid with multiple anti-cancer effects. Here, we identified BD could significantly inhibit the HIF-1α expression and its subsequently mediated HCC cell metabolism. Using biophysical proteomics approaches, we identified inhibitor of β-catenin and T-cell factor (ICAT) as the functional target of BD. By targeting ICAT, BD disrupted the interaction of β-catenin and ICAT, and promoted β-catenin degradation, which in turn induced the decrease of HIF-1α expression. Furthermore, BD could inhibit HCC cells proliferation and tumor growth in vivo, and knockdown of ICAT substantially increased resistance to BD treatment in vitro. Our data highlight the potential of BD as a modulator of β-catenin/HIF-1α axis mediated HCC metabolism. |
---|