Cargando…

Bruceine D inhibits HIF-1α-mediated glucose metabolism in hepatocellular carcinoma by blocking ICAT/β-catenin interaction

Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths, characterized by highly hypoxic tumor microenvironment. Hypoxia-inducible factor-1α (HIF-1α) is a major regulator involved in cellular response to changes of oxygen levels, supporting the adaptation of tumor cells...

Descripción completa

Detalles Bibliográficos
Autores principales: Huang, Rui, Zhang, Lijun, Jin, Jinmei, Zhou, Yudong, Zhang, Hongwei, Lv, Chao, Lu, Dong, Wu, Ye, Zhang, Hong, Liu, Sanhong, Chen, Hongzhuan, Luan, Xin, Zhang, Weidong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8642446/
https://www.ncbi.nlm.nih.gov/pubmed/34900531
http://dx.doi.org/10.1016/j.apsb.2021.05.009
Descripción
Sumario:Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths, characterized by highly hypoxic tumor microenvironment. Hypoxia-inducible factor-1α (HIF-1α) is a major regulator involved in cellular response to changes of oxygen levels, supporting the adaptation of tumor cells to hypoxia. Bruceine D (BD) is an isolated natural quassinoid with multiple anti-cancer effects. Here, we identified BD could significantly inhibit the HIF-1α expression and its subsequently mediated HCC cell metabolism. Using biophysical proteomics approaches, we identified inhibitor of β-catenin and T-cell factor (ICAT) as the functional target of BD. By targeting ICAT, BD disrupted the interaction of β-catenin and ICAT, and promoted β-catenin degradation, which in turn induced the decrease of HIF-1α expression. Furthermore, BD could inhibit HCC cells proliferation and tumor growth in vivo, and knockdown of ICAT substantially increased resistance to BD treatment in vitro. Our data highlight the potential of BD as a modulator of β-catenin/HIF-1α axis mediated HCC metabolism.