Cargando…
High-intensity training induces non-stoichiometric changes in the mitochondrial proteome of human skeletal muscle without reorganisation of respiratory chain content
Mitochondrial defects are implicated in multiple diseases and aging. Exercise training is an accessible, inexpensive therapeutic intervention that can improve mitochondrial bioenergetics and quality of life. By combining multiple omics techniques with biochemical and in silico normalisation, we remo...
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8642543/ https://www.ncbi.nlm.nih.gov/pubmed/34862379 http://dx.doi.org/10.1038/s41467-021-27153-3 |
_version_ | 1784609699504586752 |
---|---|
author | Granata, Cesare Caruana, Nikeisha J. Botella, Javier Jamnick, Nicholas A. Huynh, Kevin Kuang, Jujiao Janssen, Hans A. Reljic, Boris Mellett, Natalie A. Laskowski, Adrienne Stait, Tegan L. Frazier, Ann E. Coughlan, Melinda T. Meikle, Peter J. Thorburn, David R. Stroud, David A. Bishop, David J. |
author_facet | Granata, Cesare Caruana, Nikeisha J. Botella, Javier Jamnick, Nicholas A. Huynh, Kevin Kuang, Jujiao Janssen, Hans A. Reljic, Boris Mellett, Natalie A. Laskowski, Adrienne Stait, Tegan L. Frazier, Ann E. Coughlan, Melinda T. Meikle, Peter J. Thorburn, David R. Stroud, David A. Bishop, David J. |
author_sort | Granata, Cesare |
collection | PubMed |
description | Mitochondrial defects are implicated in multiple diseases and aging. Exercise training is an accessible, inexpensive therapeutic intervention that can improve mitochondrial bioenergetics and quality of life. By combining multiple omics techniques with biochemical and in silico normalisation, we removed the bias arising from the training-induced increase in mitochondrial content to unearth an intricate and previously undemonstrated network of differentially prioritised mitochondrial adaptations. We show that changes in hundreds of transcripts, proteins, and lipids are not stoichiometrically linked to the overall increase in mitochondrial content. Our findings suggest enhancing electron flow to oxidative phosphorylation (OXPHOS) is more important to improve ATP generation than increasing the abundance of the OXPHOS machinery, and do not support the hypothesis that training-induced supercomplex formation enhances mitochondrial bioenergetics. Our study provides an analytical approach allowing unbiased and in-depth investigations of training-induced mitochondrial adaptations, challenging our current understanding, and calling for careful reinterpretation of previous findings. |
format | Online Article Text |
id | pubmed-8642543 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-86425432021-12-15 High-intensity training induces non-stoichiometric changes in the mitochondrial proteome of human skeletal muscle without reorganisation of respiratory chain content Granata, Cesare Caruana, Nikeisha J. Botella, Javier Jamnick, Nicholas A. Huynh, Kevin Kuang, Jujiao Janssen, Hans A. Reljic, Boris Mellett, Natalie A. Laskowski, Adrienne Stait, Tegan L. Frazier, Ann E. Coughlan, Melinda T. Meikle, Peter J. Thorburn, David R. Stroud, David A. Bishop, David J. Nat Commun Article Mitochondrial defects are implicated in multiple diseases and aging. Exercise training is an accessible, inexpensive therapeutic intervention that can improve mitochondrial bioenergetics and quality of life. By combining multiple omics techniques with biochemical and in silico normalisation, we removed the bias arising from the training-induced increase in mitochondrial content to unearth an intricate and previously undemonstrated network of differentially prioritised mitochondrial adaptations. We show that changes in hundreds of transcripts, proteins, and lipids are not stoichiometrically linked to the overall increase in mitochondrial content. Our findings suggest enhancing electron flow to oxidative phosphorylation (OXPHOS) is more important to improve ATP generation than increasing the abundance of the OXPHOS machinery, and do not support the hypothesis that training-induced supercomplex formation enhances mitochondrial bioenergetics. Our study provides an analytical approach allowing unbiased and in-depth investigations of training-induced mitochondrial adaptations, challenging our current understanding, and calling for careful reinterpretation of previous findings. Nature Publishing Group UK 2021-12-03 /pmc/articles/PMC8642543/ /pubmed/34862379 http://dx.doi.org/10.1038/s41467-021-27153-3 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Granata, Cesare Caruana, Nikeisha J. Botella, Javier Jamnick, Nicholas A. Huynh, Kevin Kuang, Jujiao Janssen, Hans A. Reljic, Boris Mellett, Natalie A. Laskowski, Adrienne Stait, Tegan L. Frazier, Ann E. Coughlan, Melinda T. Meikle, Peter J. Thorburn, David R. Stroud, David A. Bishop, David J. High-intensity training induces non-stoichiometric changes in the mitochondrial proteome of human skeletal muscle without reorganisation of respiratory chain content |
title | High-intensity training induces non-stoichiometric changes in the mitochondrial proteome of human skeletal muscle without reorganisation of respiratory chain content |
title_full | High-intensity training induces non-stoichiometric changes in the mitochondrial proteome of human skeletal muscle without reorganisation of respiratory chain content |
title_fullStr | High-intensity training induces non-stoichiometric changes in the mitochondrial proteome of human skeletal muscle without reorganisation of respiratory chain content |
title_full_unstemmed | High-intensity training induces non-stoichiometric changes in the mitochondrial proteome of human skeletal muscle without reorganisation of respiratory chain content |
title_short | High-intensity training induces non-stoichiometric changes in the mitochondrial proteome of human skeletal muscle without reorganisation of respiratory chain content |
title_sort | high-intensity training induces non-stoichiometric changes in the mitochondrial proteome of human skeletal muscle without reorganisation of respiratory chain content |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8642543/ https://www.ncbi.nlm.nih.gov/pubmed/34862379 http://dx.doi.org/10.1038/s41467-021-27153-3 |
work_keys_str_mv | AT granatacesare highintensitytraininginducesnonstoichiometricchangesinthemitochondrialproteomeofhumanskeletalmusclewithoutreorganisationofrespiratorychaincontent AT caruananikeishaj highintensitytraininginducesnonstoichiometricchangesinthemitochondrialproteomeofhumanskeletalmusclewithoutreorganisationofrespiratorychaincontent AT botellajavier highintensitytraininginducesnonstoichiometricchangesinthemitochondrialproteomeofhumanskeletalmusclewithoutreorganisationofrespiratorychaincontent AT jamnicknicholasa highintensitytraininginducesnonstoichiometricchangesinthemitochondrialproteomeofhumanskeletalmusclewithoutreorganisationofrespiratorychaincontent AT huynhkevin highintensitytraininginducesnonstoichiometricchangesinthemitochondrialproteomeofhumanskeletalmusclewithoutreorganisationofrespiratorychaincontent AT kuangjujiao highintensitytraininginducesnonstoichiometricchangesinthemitochondrialproteomeofhumanskeletalmusclewithoutreorganisationofrespiratorychaincontent AT janssenhansa highintensitytraininginducesnonstoichiometricchangesinthemitochondrialproteomeofhumanskeletalmusclewithoutreorganisationofrespiratorychaincontent AT reljicboris highintensitytraininginducesnonstoichiometricchangesinthemitochondrialproteomeofhumanskeletalmusclewithoutreorganisationofrespiratorychaincontent AT mellettnataliea highintensitytraininginducesnonstoichiometricchangesinthemitochondrialproteomeofhumanskeletalmusclewithoutreorganisationofrespiratorychaincontent AT laskowskiadrienne highintensitytraininginducesnonstoichiometricchangesinthemitochondrialproteomeofhumanskeletalmusclewithoutreorganisationofrespiratorychaincontent AT staitteganl highintensitytraininginducesnonstoichiometricchangesinthemitochondrialproteomeofhumanskeletalmusclewithoutreorganisationofrespiratorychaincontent AT frazieranne highintensitytraininginducesnonstoichiometricchangesinthemitochondrialproteomeofhumanskeletalmusclewithoutreorganisationofrespiratorychaincontent AT coughlanmelindat highintensitytraininginducesnonstoichiometricchangesinthemitochondrialproteomeofhumanskeletalmusclewithoutreorganisationofrespiratorychaincontent AT meiklepeterj highintensitytraininginducesnonstoichiometricchangesinthemitochondrialproteomeofhumanskeletalmusclewithoutreorganisationofrespiratorychaincontent AT thorburndavidr highintensitytraininginducesnonstoichiometricchangesinthemitochondrialproteomeofhumanskeletalmusclewithoutreorganisationofrespiratorychaincontent AT strouddavida highintensitytraininginducesnonstoichiometricchangesinthemitochondrialproteomeofhumanskeletalmusclewithoutreorganisationofrespiratorychaincontent AT bishopdavidj highintensitytraininginducesnonstoichiometricchangesinthemitochondrialproteomeofhumanskeletalmusclewithoutreorganisationofrespiratorychaincontent |