Cargando…
scDeepSort: a pre-trained cell-type annotation method for single-cell transcriptomics using deep learning with a weighted graph neural network
Advances in single-cell RNA sequencing (scRNA-seq) have furthered the simultaneous classification of thousands of cells in a single assay based on transcriptome profiling. In most analysis protocols, single-cell type annotation relies on marker genes or RNA-seq profiles, resulting in poor extrapolat...
Autores principales: | Shao, Xin, Yang, Haihong, Zhuang, Xiang, Liao, Jie, Yang, Penghui, Cheng, Junyun, Lu, Xiaoyan, Chen, Huajun, Fan, Xiaohui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8643674/ https://www.ncbi.nlm.nih.gov/pubmed/34500471 http://dx.doi.org/10.1093/nar/gkab775 |
Ejemplares similares
-
scMRMA: single cell multiresolution marker-based annotation
por: Li, Jia, et al.
Publicado: (2021) -
scMAGIC: accurately annotating single cells using two rounds of reference-based classification
por: Zhang, Yu, et al.
Publicado: (2022) -
Massive functional mapping of a 5′-UTR by saturation mutagenesis, phenotypic sorting and deep sequencing
por: Holmqvist, Erik, et al.
Publicado: (2013) -
MLG: multilayer graph clustering for multi-condition scRNA-seq data
por: Lu, Shan, et al.
Publicado: (2021) -
Knowledge-graph-based cell-cell communication inference for spatially resolved transcriptomic data with SpaTalk
por: Shao, Xin, et al.
Publicado: (2022)