Cargando…
Discordance of PIK3CA and TP53 mutations between breast cancer brain metastases and matched primary tumors
There is limited knowledge of the biology of breast cancer (BC) brain metastasis (BM). We primarily aimed to determine the mutations in BCBM and to compare the mutational pattern with the matched primary breast cancer (BC). Secondary aims were to determine mutations in each subgroup (Luminal A-/B-li...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8651781/ https://www.ncbi.nlm.nih.gov/pubmed/34876602 http://dx.doi.org/10.1038/s41598-021-02903-x |
Sumario: | There is limited knowledge of the biology of breast cancer (BC) brain metastasis (BM). We primarily aimed to determine the mutations in BCBM and to compare the mutational pattern with the matched primary breast cancer (BC). Secondary aims were to determine mutations in each subgroup (Luminal A-/B-like, HER2+ and TNBC) of BCBM, and to determine survival according to specific mutations. We investigated 57 BCBMs, including 46 cases with matched primary tumors (PT) by targeted Next Generation Sequencing (NGS) using the Cancer Hotspot Panel v2 (ThermoFisher Scientific) covering 207 targeted regions in 50 cancer related genes. Subtype according to immunohistochemistry was re-evaluated. NGS results fulfilling sequencing quality criteria were obtained from 52 BM and 41 PT, out of which 37 were matched pairs. Pathogenic mutations were detected in 66% of PTs (27/41), and 62% of BMs (32/52). TP53 mutations were most frequent; 49% (20/41) of PTs and 48% (25/52) in BMs, followed by PIK3CA mutations; 22% (9/42) in PTs and 25% (13/52) in BMs. Mutations in CDH1, EGFR, HRAS, RB1 CDKN2A and PTEN were detected in single pairs or single samples. Mutational pattern was discordant in 24% of matched pairs. We show a discordance of PIK3CA and TP53 mutations of roughly 25% indicating the need to develop methods to assess mutational status in brain metastasis where analysis of cell-free DNA from cerebrospinal fluid (CSF) has shown promising results. |
---|