Cargando…

In situ functional cell phenotyping reveals microdomain networks in colorectal cancer recurrence

Tumors are dynamic ecosystems comprising localized niches (microdomains), possessing distinct compositions and spatial configurations of cancer and non-cancer cell populations. Microdomain-specific network signaling coevolves with a continuum of cell states and functional plasticity associated with...

Descripción completa

Detalles Bibliográficos
Autores principales: Furman, Samantha A., Stern, Andrew M., Uttam, Shikhar, Taylor, D. Lansing, Pullara, Filippo, Chennubhotla, S. Chakra
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8653984/
https://www.ncbi.nlm.nih.gov/pubmed/34888541
http://dx.doi.org/10.1016/j.crmeth.2021.100072
_version_ 1784611778697625600
author Furman, Samantha A.
Stern, Andrew M.
Uttam, Shikhar
Taylor, D. Lansing
Pullara, Filippo
Chennubhotla, S. Chakra
author_facet Furman, Samantha A.
Stern, Andrew M.
Uttam, Shikhar
Taylor, D. Lansing
Pullara, Filippo
Chennubhotla, S. Chakra
author_sort Furman, Samantha A.
collection PubMed
description Tumors are dynamic ecosystems comprising localized niches (microdomains), possessing distinct compositions and spatial configurations of cancer and non-cancer cell populations. Microdomain-specific network signaling coevolves with a continuum of cell states and functional plasticity associated with disease progression and therapeutic responses. We present LEAPH, an unsupervised machine learning algorithm for identifying cell phenotypes, which applies recursive steps of probabilistic clustering and spatial regularization to derive functional phenotypes (FPs) along a continuum. Combining LEAPH with pointwise mutual information and network biology analyses enables the discovery of outcome-associated microdomains visualized as distinct spatial configurations of heterogeneous FPs. Utilization of an immunofluorescence-based (51 biomarkers) image dataset of colorectal carcinoma primary tumors (n = 213) revealed microdomain-specific network dysregulation supporting cancer stem cell maintenance and immunosuppression that associated selectively with the recurrence phenotype. LEAPH enables an explainable artificial intelligence platform providing insights into pathophysiological mechanisms and novel drug targets to inform personalized therapeutic strategies.
format Online
Article
Text
id pubmed-8653984
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-86539842021-12-08 In situ functional cell phenotyping reveals microdomain networks in colorectal cancer recurrence Furman, Samantha A. Stern, Andrew M. Uttam, Shikhar Taylor, D. Lansing Pullara, Filippo Chennubhotla, S. Chakra Cell Rep Methods Article Tumors are dynamic ecosystems comprising localized niches (microdomains), possessing distinct compositions and spatial configurations of cancer and non-cancer cell populations. Microdomain-specific network signaling coevolves with a continuum of cell states and functional plasticity associated with disease progression and therapeutic responses. We present LEAPH, an unsupervised machine learning algorithm for identifying cell phenotypes, which applies recursive steps of probabilistic clustering and spatial regularization to derive functional phenotypes (FPs) along a continuum. Combining LEAPH with pointwise mutual information and network biology analyses enables the discovery of outcome-associated microdomains visualized as distinct spatial configurations of heterogeneous FPs. Utilization of an immunofluorescence-based (51 biomarkers) image dataset of colorectal carcinoma primary tumors (n = 213) revealed microdomain-specific network dysregulation supporting cancer stem cell maintenance and immunosuppression that associated selectively with the recurrence phenotype. LEAPH enables an explainable artificial intelligence platform providing insights into pathophysiological mechanisms and novel drug targets to inform personalized therapeutic strategies. Elsevier 2021-09-15 /pmc/articles/PMC8653984/ /pubmed/34888541 http://dx.doi.org/10.1016/j.crmeth.2021.100072 Text en © 2021 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
Furman, Samantha A.
Stern, Andrew M.
Uttam, Shikhar
Taylor, D. Lansing
Pullara, Filippo
Chennubhotla, S. Chakra
In situ functional cell phenotyping reveals microdomain networks in colorectal cancer recurrence
title In situ functional cell phenotyping reveals microdomain networks in colorectal cancer recurrence
title_full In situ functional cell phenotyping reveals microdomain networks in colorectal cancer recurrence
title_fullStr In situ functional cell phenotyping reveals microdomain networks in colorectal cancer recurrence
title_full_unstemmed In situ functional cell phenotyping reveals microdomain networks in colorectal cancer recurrence
title_short In situ functional cell phenotyping reveals microdomain networks in colorectal cancer recurrence
title_sort in situ functional cell phenotyping reveals microdomain networks in colorectal cancer recurrence
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8653984/
https://www.ncbi.nlm.nih.gov/pubmed/34888541
http://dx.doi.org/10.1016/j.crmeth.2021.100072
work_keys_str_mv AT furmansamanthaa insitufunctionalcellphenotypingrevealsmicrodomainnetworksincolorectalcancerrecurrence
AT sternandrewm insitufunctionalcellphenotypingrevealsmicrodomainnetworksincolorectalcancerrecurrence
AT uttamshikhar insitufunctionalcellphenotypingrevealsmicrodomainnetworksincolorectalcancerrecurrence
AT taylordlansing insitufunctionalcellphenotypingrevealsmicrodomainnetworksincolorectalcancerrecurrence
AT pullarafilippo insitufunctionalcellphenotypingrevealsmicrodomainnetworksincolorectalcancerrecurrence
AT chennubhotlaschakra insitufunctionalcellphenotypingrevealsmicrodomainnetworksincolorectalcancerrecurrence