Cargando…

Targeted insertion of large genetic payloads using cas directed LINE-1 reverse transcriptase

A difficult genome editing goal is the site-specific insertion of large genetic constructs. Here we describe the GENEWRITE system, where site-specific targetable activity of Cas endonucleases is coupled with the reverse transcriptase activity of the ORF2p protein of the human retrotransposon LINE-1....

Descripción completa

Detalles Bibliográficos
Autores principales: Manoj, Femila, Tai, Laura W., Wang, Katelyn Sun Mi, Kuhlman, Thomas E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8654924/
https://www.ncbi.nlm.nih.gov/pubmed/34880381
http://dx.doi.org/10.1038/s41598-021-03130-0
Descripción
Sumario:A difficult genome editing goal is the site-specific insertion of large genetic constructs. Here we describe the GENEWRITE system, where site-specific targetable activity of Cas endonucleases is coupled with the reverse transcriptase activity of the ORF2p protein of the human retrotransposon LINE-1. This is accomplished by providing two RNAs: a guide RNA targeting Cas endonuclease activity and an appropriately designed payload RNA encoding the desired insertion. Using E. coli as a simple platform for development and deployment, we show that with proper payload design and co-expression of helper proteins, GENEWRITE can enable insertion of large genetic payloads to precise locations, although with off-target effects, using the described approach. Based upon these results, we describe a potential strategy for implementation of GENEWRITE in more complex systems.