Cargando…
VDA-RWLRLS: An anti-SARS-CoV-2 drug prioritizing framework combining an unbalanced bi-random walk and Laplacian regularized least squares()
BACKGROUND: A new coronavirus disease named COVID-19, caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), is rapidly spreading worldwide. However, there is currently no effective drug to fight COVID-19. METHODS: In this study, we developed a Virus-Drug Association (VDA) identific...
Autores principales: | Shen, Ling, Liu, Fuxing, Huang, Li, Liu, Guangyi, Zhou, Liqian, Peng, Lihong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8664497/ https://www.ncbi.nlm.nih.gov/pubmed/34902608 http://dx.doi.org/10.1016/j.compbiomed.2021.105119 |
Ejemplares similares
-
Finding Lung-Cancer-Related lncRNAs Based on Laplacian Regularized Least Squares With Unbalanced Bi-Random Walk
por: Guo, Zhifeng, et al.
Publicado: (2022) -
Kinase Identification with Supervised Laplacian Regularized Least Squares
por: Li, Ao, et al.
Publicado: (2015) -
LRLSHMDA: Laplacian Regularized Least Squares for Human Microbe–Disease Association prediction
por: Wang, Fan, et al.
Publicado: (2017) -
Consistent Partial Least Squares Path Modeling via Regularization
por: Jung, Sunho, et al.
Publicado: (2018) -
Regularized Least Squares Cancer Classifiers from DNA microarray data
por: Ancona, Nicola, et al.
Publicado: (2005)