Cargando…

Dasatinib ameliorates thioacetamide-induced liver fibrosis: modulation of miR-378 and miR-17 and their linked Wnt/β-catenin and TGF-β/smads pathways

Hepatic stellate cells activation (HSCs) plays a crucial role in the pathogenesis of liver fibrosis. Specific microRNAs have been suggested to affect the activation of HSCs via various signalling pathways including TGF-β/smads and Wnt/β-catenin pathways. Dasatinib is a multitarget inhibitor of many...

Descripción completa

Detalles Bibliográficos
Autores principales: Zaafan, Mai A., Abdelhamid, Amr M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Taylor & Francis 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8667920/
https://www.ncbi.nlm.nih.gov/pubmed/34894966
http://dx.doi.org/10.1080/14756366.2021.1995379
Descripción
Sumario:Hepatic stellate cells activation (HSCs) plays a crucial role in the pathogenesis of liver fibrosis. Specific microRNAs have been suggested to affect the activation of HSCs via various signalling pathways including TGF-β/smads and Wnt/β-catenin pathways. Dasatinib is a multitarget inhibitor of many tyrosine kinases has recently studied for its anti-fibrotic effects in a variety of fibrous diseases. This study investigated the role of modulation of miRNA-378 and miRNA-17 in the pathogenesis of liver fibrosis through altering Wnt/β-catenin and TGF-β/smads pathways and evaluated the beneficial effect of the tyrosine kinase inhibitor, dasatinib, in thioacetamide-induced liver fibrosis model in mice. Treatment with dasatinib down-regulated miRNA-17 expression, leading to the restoration of WiF-1 and smad-7 which cause the inhibition of both Wnt/β-catenin and TGF-β/smads signalling. In addition, it upregulated miRNA-378 leading to the decrease of Wnt-10 which contributes to the suppression of activated HSCs.