Cargando…
Fusion of multi-scale bag of deep visual words features of chest X-ray images to detect COVID-19 infection
Chest X-ray (CXR) images have been one of the important diagnosis tools used in the COVID-19 disease diagnosis. Deep learning (DL)-based methods have been used heavily to analyze these images. Compared to other DL-based methods, the bag of deep visual words-based method (BoDVW) proposed recently is...
Autores principales: | Sitaula, Chiranjibi, Shahi, Tej Bahadur, Aryal, Sunil, Marzbanrad, Faezeh |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8668931/ https://www.ncbi.nlm.nih.gov/pubmed/34903792 http://dx.doi.org/10.1038/s41598-021-03287-8 |
Ejemplares similares
-
Publisher Correction: Fusion of multi-scale bag of deep visual words features of chest X-ray images to detect COVID-19 infection
por: Sitaula, Chiranjibi, et al.
Publicado: (2022) -
New bag of deep visual words based features to classify chest x-ray images for COVID-19 diagnosis
por: Sitaula, Chiranjibi, et al.
Publicado: (2021) -
Monkeypox Virus Detection Using Pre-trained Deep Learning-based Approaches
por: Sitaula, Chiranjibi, et al.
Publicado: (2022) -
Attention-based VGG-16 model for COVID-19 chest X-ray image classification
por: Sitaula, Chiranjibi, et al.
Publicado: (2020) -
Fruit classification using attention-based MobileNetV2 for industrial applications
por: Shahi, Tej Bahadur, et al.
Publicado: (2022)