Cargando…

Effects of applying cellulase and starch on the fermentation characteristics and microbial communities of Napier grass (Pennisetum purpureum Schum.) silage

This study investigated the effects of applying cellulase and starch on the fermentation characteristics and microbial communities of Napier grass silage after ensiling for 30 d. Three groups were studied: No additives (control); added cellulase (Group 1); and added cellulase and starch (Group 2). T...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Guoqiang, Wu, Hao, Li, Li, He, Jiajun, Hu, Zhichao, Yang, Xinjian, Xie, Xiangxue
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Korean Society of Animal Sciences and Technology 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8672258/
https://www.ncbi.nlm.nih.gov/pubmed/34957445
http://dx.doi.org/10.5187/jast.2021.e107
Descripción
Sumario:This study investigated the effects of applying cellulase and starch on the fermentation characteristics and microbial communities of Napier grass silage after ensiling for 30 d. Three groups were studied: No additives (control); added cellulase (Group 1); and added cellulase and starch (Group 2). The results showed that the addition of cellulase and starch decreased the crude protein (CP), neutral detergent fiber (NDF), acid detergent fiber (ADF) and pH significantly (p < 0.05) and increased water-soluble carbohydrate (WSC) content (p < 0.05). The addition of additives in two treated groups exerted a positive effect on the lactic acid (LA) content, lactic acid bacteria (LAB) population, and lactic acid / acetic acid (LA/AA) ratio, even the changes were not significant (p > 0.05). Calculation of Flieg’s scores indicated that cellulase application increased silage quality to some extent, while the application of cellulase and starch together significantly improved fermentation (p < 0.05). Compared with the control, both additive groups showed increased microbial diversity after ensiling with an abundance of favorable bacteria including Firmicutes and Weissella, and the bacteria including Proteobacteria, Bacteroidetes, Acinetobacter increased as well. For alpha diversity analysis, the combined application of cellulase and starch in Group 2 gave significant increases in all indices (p < 0.05). The study demonstrated that the application of cellulase and starch can increase the quality of Napier grass preserved as silage.