Cargando…

Beyondcell: targeting cancer therapeutic heterogeneity in single-cell RNA-seq data

We present Beyondcell, a computational methodology for identifying tumour cell subpopulations with distinct drug responses in single-cell RNA-seq data and proposing cancer-specific treatments. Our method calculates an enrichment score in a collection of drug signatures, delineating therapeutic clust...

Descripción completa

Detalles Bibliográficos
Autores principales: Fustero-Torre, Coral, Jiménez-Santos, María José, García-Martín, Santiago, Carretero-Puche, Carlos, García-Jimeno, Luis, Ivanchuk, Vadym, Di Domenico, Tomás, Gómez-López, Gonzalo, Al-Shahrour, Fátima
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8675493/
https://www.ncbi.nlm.nih.gov/pubmed/34911571
http://dx.doi.org/10.1186/s13073-021-01001-x
Descripción
Sumario:We present Beyondcell, a computational methodology for identifying tumour cell subpopulations with distinct drug responses in single-cell RNA-seq data and proposing cancer-specific treatments. Our method calculates an enrichment score in a collection of drug signatures, delineating therapeutic clusters (TCs) within cellular populations. Additionally, Beyondcell determines the therapeutic differences among cell populations and generates a prioritised sensitivity-based ranking in order to guide drug selection. We performed Beyondcell analysis in five single-cell datasets and demonstrated that TCs can be exploited to target malignant cells both in cancer cell lines and tumour patients. Beyondcell is available at: https://gitlab.com/bu_cnio/beyondcell. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13073-021-01001-x.