Cargando…
Colonization of fecal microbiota from patients with neonatal necrotizing enterocolitis exacerbates intestinal injury in germfree mice subjected to necrotizing enterocolitis-induction protocol via alterations in butyrate and regulatory T cells
BACKGROUND: Necrotizing enterocolitis (NEC) remains a life-threatening disease in neonates. Numerous studies have shown a correlation between the intestinal microbiota and NEC, but the causal link remains unclear. This study aimed to demonstrate the causal role of gut microbiota in NEC and explore p...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8684079/ https://www.ncbi.nlm.nih.gov/pubmed/34922582 http://dx.doi.org/10.1186/s12967-021-03109-5 |
_version_ | 1784617543303954432 |
---|---|
author | He, Yu Du, Weixia Xiao, Sa Zeng, Benhua She, Xiang Liu, Dong Du, Hua Li, Luquan Li, Fang Ai, Qing He, Junli Song, Chao Wei, Hong Zhao, Xiaodong Yu, Jialin |
author_facet | He, Yu Du, Weixia Xiao, Sa Zeng, Benhua She, Xiang Liu, Dong Du, Hua Li, Luquan Li, Fang Ai, Qing He, Junli Song, Chao Wei, Hong Zhao, Xiaodong Yu, Jialin |
author_sort | He, Yu |
collection | PubMed |
description | BACKGROUND: Necrotizing enterocolitis (NEC) remains a life-threatening disease in neonates. Numerous studies have shown a correlation between the intestinal microbiota and NEC, but the causal link remains unclear. This study aimed to demonstrate the causal role of gut microbiota in NEC and explore potential mechanisms involved. METHODS: Eighty-one fecal samples from patients with NEC and eighty-one matched controls (matched to the NEC infants by gestational age, birth weight, date of birth, mode of delivery and feeding patterns) were collected. To explore if altered gut microbiota contributes to the pathogenesis of NEC, fecal microbiota transplantation (FMT) was carried out in germ-free (GF) mice prior to a NEC-induction protocol that included exposure to hypoxia and cold stress. Butyric acid was also administered to demonstrate its role in NEC. The fecal microbiota from patients and mice were analyzed by 16S rRNA gene sequencing analysis. Short chain fatty acid (SCFA) levels were measured by gas chromatography-mass spectrometry (GC–MS). The ontogeny of T cells and regulatory T cells (T(regs)) in lamina propria mononuclear cells (LPMC) from the ileum of patients and mice were isolated and analyzed by flow cytometry.The transcription of inflammatory cytokines was quantified by qRT-PCR. RESULTS: NEC patients had increased Proteobacteria and decreased Firmicutes and Bacteroidetes compared to fecal control samples, and the level of butyric acid in the NEC group was lower than the control group. FMT in GF mice with samples from NEC patients achieved a higher histological injury scores when compared to mice that received FMT with control samples. Alterations in microbiota and butyrate levels were maintained in mice following FMT. The ratio of T(reg)/CD4(+)T (T(helper)) cells was reduced in both NEC patients and mice modeling NEC following FMT. CONCLUSIONS: The microbiota was found to have NEC and the microbial butyrate-T(reg) axis was identified as a potential mechanism for the observed effects. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12967-021-03109-5. |
format | Online Article Text |
id | pubmed-8684079 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-86840792021-12-20 Colonization of fecal microbiota from patients with neonatal necrotizing enterocolitis exacerbates intestinal injury in germfree mice subjected to necrotizing enterocolitis-induction protocol via alterations in butyrate and regulatory T cells He, Yu Du, Weixia Xiao, Sa Zeng, Benhua She, Xiang Liu, Dong Du, Hua Li, Luquan Li, Fang Ai, Qing He, Junli Song, Chao Wei, Hong Zhao, Xiaodong Yu, Jialin J Transl Med Research BACKGROUND: Necrotizing enterocolitis (NEC) remains a life-threatening disease in neonates. Numerous studies have shown a correlation between the intestinal microbiota and NEC, but the causal link remains unclear. This study aimed to demonstrate the causal role of gut microbiota in NEC and explore potential mechanisms involved. METHODS: Eighty-one fecal samples from patients with NEC and eighty-one matched controls (matched to the NEC infants by gestational age, birth weight, date of birth, mode of delivery and feeding patterns) were collected. To explore if altered gut microbiota contributes to the pathogenesis of NEC, fecal microbiota transplantation (FMT) was carried out in germ-free (GF) mice prior to a NEC-induction protocol that included exposure to hypoxia and cold stress. Butyric acid was also administered to demonstrate its role in NEC. The fecal microbiota from patients and mice were analyzed by 16S rRNA gene sequencing analysis. Short chain fatty acid (SCFA) levels were measured by gas chromatography-mass spectrometry (GC–MS). The ontogeny of T cells and regulatory T cells (T(regs)) in lamina propria mononuclear cells (LPMC) from the ileum of patients and mice were isolated and analyzed by flow cytometry.The transcription of inflammatory cytokines was quantified by qRT-PCR. RESULTS: NEC patients had increased Proteobacteria and decreased Firmicutes and Bacteroidetes compared to fecal control samples, and the level of butyric acid in the NEC group was lower than the control group. FMT in GF mice with samples from NEC patients achieved a higher histological injury scores when compared to mice that received FMT with control samples. Alterations in microbiota and butyrate levels were maintained in mice following FMT. The ratio of T(reg)/CD4(+)T (T(helper)) cells was reduced in both NEC patients and mice modeling NEC following FMT. CONCLUSIONS: The microbiota was found to have NEC and the microbial butyrate-T(reg) axis was identified as a potential mechanism for the observed effects. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12967-021-03109-5. BioMed Central 2021-12-18 /pmc/articles/PMC8684079/ /pubmed/34922582 http://dx.doi.org/10.1186/s12967-021-03109-5 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
spellingShingle | Research He, Yu Du, Weixia Xiao, Sa Zeng, Benhua She, Xiang Liu, Dong Du, Hua Li, Luquan Li, Fang Ai, Qing He, Junli Song, Chao Wei, Hong Zhao, Xiaodong Yu, Jialin Colonization of fecal microbiota from patients with neonatal necrotizing enterocolitis exacerbates intestinal injury in germfree mice subjected to necrotizing enterocolitis-induction protocol via alterations in butyrate and regulatory T cells |
title | Colonization of fecal microbiota from patients with neonatal necrotizing enterocolitis exacerbates intestinal injury in germfree mice subjected to necrotizing enterocolitis-induction protocol via alterations in butyrate and regulatory T cells |
title_full | Colonization of fecal microbiota from patients with neonatal necrotizing enterocolitis exacerbates intestinal injury in germfree mice subjected to necrotizing enterocolitis-induction protocol via alterations in butyrate and regulatory T cells |
title_fullStr | Colonization of fecal microbiota from patients with neonatal necrotizing enterocolitis exacerbates intestinal injury in germfree mice subjected to necrotizing enterocolitis-induction protocol via alterations in butyrate and regulatory T cells |
title_full_unstemmed | Colonization of fecal microbiota from patients with neonatal necrotizing enterocolitis exacerbates intestinal injury in germfree mice subjected to necrotizing enterocolitis-induction protocol via alterations in butyrate and regulatory T cells |
title_short | Colonization of fecal microbiota from patients with neonatal necrotizing enterocolitis exacerbates intestinal injury in germfree mice subjected to necrotizing enterocolitis-induction protocol via alterations in butyrate and regulatory T cells |
title_sort | colonization of fecal microbiota from patients with neonatal necrotizing enterocolitis exacerbates intestinal injury in germfree mice subjected to necrotizing enterocolitis-induction protocol via alterations in butyrate and regulatory t cells |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8684079/ https://www.ncbi.nlm.nih.gov/pubmed/34922582 http://dx.doi.org/10.1186/s12967-021-03109-5 |
work_keys_str_mv | AT heyu colonizationoffecalmicrobiotafrompatientswithneonatalnecrotizingenterocolitisexacerbatesintestinalinjuryingermfreemicesubjectedtonecrotizingenterocolitisinductionprotocolviaalterationsinbutyrateandregulatorytcells AT duweixia colonizationoffecalmicrobiotafrompatientswithneonatalnecrotizingenterocolitisexacerbatesintestinalinjuryingermfreemicesubjectedtonecrotizingenterocolitisinductionprotocolviaalterationsinbutyrateandregulatorytcells AT xiaosa colonizationoffecalmicrobiotafrompatientswithneonatalnecrotizingenterocolitisexacerbatesintestinalinjuryingermfreemicesubjectedtonecrotizingenterocolitisinductionprotocolviaalterationsinbutyrateandregulatorytcells AT zengbenhua colonizationoffecalmicrobiotafrompatientswithneonatalnecrotizingenterocolitisexacerbatesintestinalinjuryingermfreemicesubjectedtonecrotizingenterocolitisinductionprotocolviaalterationsinbutyrateandregulatorytcells AT shexiang colonizationoffecalmicrobiotafrompatientswithneonatalnecrotizingenterocolitisexacerbatesintestinalinjuryingermfreemicesubjectedtonecrotizingenterocolitisinductionprotocolviaalterationsinbutyrateandregulatorytcells AT liudong colonizationoffecalmicrobiotafrompatientswithneonatalnecrotizingenterocolitisexacerbatesintestinalinjuryingermfreemicesubjectedtonecrotizingenterocolitisinductionprotocolviaalterationsinbutyrateandregulatorytcells AT duhua colonizationoffecalmicrobiotafrompatientswithneonatalnecrotizingenterocolitisexacerbatesintestinalinjuryingermfreemicesubjectedtonecrotizingenterocolitisinductionprotocolviaalterationsinbutyrateandregulatorytcells AT liluquan colonizationoffecalmicrobiotafrompatientswithneonatalnecrotizingenterocolitisexacerbatesintestinalinjuryingermfreemicesubjectedtonecrotizingenterocolitisinductionprotocolviaalterationsinbutyrateandregulatorytcells AT lifang colonizationoffecalmicrobiotafrompatientswithneonatalnecrotizingenterocolitisexacerbatesintestinalinjuryingermfreemicesubjectedtonecrotizingenterocolitisinductionprotocolviaalterationsinbutyrateandregulatorytcells AT aiqing colonizationoffecalmicrobiotafrompatientswithneonatalnecrotizingenterocolitisexacerbatesintestinalinjuryingermfreemicesubjectedtonecrotizingenterocolitisinductionprotocolviaalterationsinbutyrateandregulatorytcells AT hejunli colonizationoffecalmicrobiotafrompatientswithneonatalnecrotizingenterocolitisexacerbatesintestinalinjuryingermfreemicesubjectedtonecrotizingenterocolitisinductionprotocolviaalterationsinbutyrateandregulatorytcells AT songchao colonizationoffecalmicrobiotafrompatientswithneonatalnecrotizingenterocolitisexacerbatesintestinalinjuryingermfreemicesubjectedtonecrotizingenterocolitisinductionprotocolviaalterationsinbutyrateandregulatorytcells AT weihong colonizationoffecalmicrobiotafrompatientswithneonatalnecrotizingenterocolitisexacerbatesintestinalinjuryingermfreemicesubjectedtonecrotizingenterocolitisinductionprotocolviaalterationsinbutyrateandregulatorytcells AT zhaoxiaodong colonizationoffecalmicrobiotafrompatientswithneonatalnecrotizingenterocolitisexacerbatesintestinalinjuryingermfreemicesubjectedtonecrotizingenterocolitisinductionprotocolviaalterationsinbutyrateandregulatorytcells AT yujialin colonizationoffecalmicrobiotafrompatientswithneonatalnecrotizingenterocolitisexacerbatesintestinalinjuryingermfreemicesubjectedtonecrotizingenterocolitisinductionprotocolviaalterationsinbutyrateandregulatorytcells |