COVID-19 Symptoms app analysis to foresee healthcare impacts: Evidence from Northern Ireland

Mobile health (mHealth) technologies, such as symptom tracking apps, are crucial for coping with the global pandemic crisis by providing near real-time, in situ information for the medical and governmental response. However, in such a dynamic and diverse environment, methods are still needed to supp...

Descripción completa

Detalles Bibliográficos
Autores principales: Sousa, José, Barata, João, Woerden, Hugo C van, Kee, Frank
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier B.V. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8686448/
https://www.ncbi.nlm.nih.gov/pubmed/34955697
http://dx.doi.org/10.1016/j.asoc.2021.108324
Descripción
Sumario:Mobile health (mHealth) technologies, such as symptom tracking apps, are crucial for coping with the global pandemic crisis by providing near real-time, in situ information for the medical and governmental response. However, in such a dynamic and diverse environment, methods are still needed to support public health decision-making. This paper uses the lens of strong structuration theory to investigate networks of COVID-19 symptoms in the Belfast metropolitan area. A self-supervised machine learning method measuring information entropy was applied to the Northern Ireland COVIDCare app. The findings reveal: (1) relevant stratifications of disease symptoms, (2) particularities in health-wealth networks, and (3) the predictive potential of artificial intelligence to extract entangled knowledge from data in COVID-related apps. The proposed method proved to be effective for near real-time in-situ analysis of COVID-19 progression and to focus and complement public health decisions. Our contribution is relevant to an understanding of SARS-COV-2 symptom entanglements in localised environments. It can assist decision-makers in designing both reactive and proactive health measures that should be personalised to the heterogeneous needs of different populations. Moreover, near real-time assessment of pandemic symptoms using digital technologies will be critical to create early warning systems of emerging SARS-CoV-2 strains and predict the need for healthcare resources.