Cargando…
Exploiting intrinsic fluctuations to identify model parameters
Parameterisation of kinetic models plays a central role in computational systems biology. Besides the lack of experimental data of high enough quality, some of the biggest challenges here are identification issues. Model parameters can be structurally non‐identifiable because of functional relations...
Autores principales: | Zimmer, Christoph, Sahle, Sven, Pahle, Jürgen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Institution of Engineering and Technology
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8687306/ https://www.ncbi.nlm.nih.gov/pubmed/26672148 http://dx.doi.org/10.1049/iet-syb.2014.0010 |
Ejemplares similares
-
Biochemical fluctuations, optimisation and the linear noise approximation
por: Pahle, Jürgen, et al.
Publicado: (2012) -
Deterministic inference for stochastic systems using multiple shooting and a linear noise approximation for the transition probabilities
por: Zimmer, Christoph, et al.
Publicado: (2015) -
Intrinsic fluctuations of reinforcement learning promote cooperation
por: Barfuss, Wolfram, et al.
Publicado: (2023) -
Modeling cellular systems
por: Graw, Frederik, et al.
Publicado: (2017) -
Exploiting the intrinsic misfolding propensity of the KRAS oncoprotein
por: Janssen, Kobe, et al.
Publicado: (2023)