Cargando…

Reversible insulin resistance in muscle and fat unrelated to the metabolic syndrome in patients with acromegaly

BACKGROUND: Patients with active acromegaly exhibit insulin resistance despite a lean phenotype whereas controlled disease improves insulin sensitivity and increases fat mass. The mechanisms underlying this paradox remain elusive, but growth hormone (GH)-induced lipolysis plays a central role. The a...

Descripción completa

Detalles Bibliográficos
Autores principales: Arlien-Søborg, Mai C., Dal, Jakob, Madsen, Michael Alle, Høgild, Morten Lyng, Hjelholt, Astrid Johannesson, Pedersen, Steen B., Møller, Niels, Jessen, Niels, Jørgensen, Jens O.L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8688588/
https://www.ncbi.nlm.nih.gov/pubmed/34929488
http://dx.doi.org/10.1016/j.ebiom.2021.103763
_version_ 1784618383156707328
author Arlien-Søborg, Mai C.
Dal, Jakob
Madsen, Michael Alle
Høgild, Morten Lyng
Hjelholt, Astrid Johannesson
Pedersen, Steen B.
Møller, Niels
Jessen, Niels
Jørgensen, Jens O.L.
author_facet Arlien-Søborg, Mai C.
Dal, Jakob
Madsen, Michael Alle
Høgild, Morten Lyng
Hjelholt, Astrid Johannesson
Pedersen, Steen B.
Møller, Niels
Jessen, Niels
Jørgensen, Jens O.L.
author_sort Arlien-Søborg, Mai C.
collection PubMed
description BACKGROUND: Patients with active acromegaly exhibit insulin resistance despite a lean phenotype whereas controlled disease improves insulin sensitivity and increases fat mass. The mechanisms underlying this paradox remain elusive, but growth hormone (GH)-induced lipolysis plays a central role. The aim of the study was to investigative the molecular mechanisms of insulin resistance dissociated from obesity in patients with acromegaly. METHODS: In a prospective study, twenty-one patients with newly diagnosed acromegaly were studied at diagnosis and after disease control obtained by either surgery alone (n=10) or somatostatin analogue (SA) treatment (n=11) with assessment of body composition (DXA scan), whole body and tissue-specific insulin sensitivity and GH and insulin signalling in adipose tissue and skeletal muscle. FINDINGS: Disease control of acromegaly significantly reduced lean body mass (p<0.001) and increased fat mass (p<0.001). At diagnosis, GH signalling (pSTAT5) was constitutively activated in fat and enhanced expression of GH-regulated genes (CISH and IGF-I) were detected in muscle and fat. Insulin sensitivity in skeletal muscle, liver and adipose tissue increased after disease control regardless of treatment modality. This was associated with enhanced insulin signalling in both muscle and fat including downregulation of phosphatase and tensin homolog (PTEN) together with reduced signalling of GH and lipolytic activators in fat. INTERPRETATION: In conclusion, the study support that uncontrolled lipolysis is a major feature of insulin resistance in active acromegaly, and is characterized by upregulation of PTEN and suppression of insulin signalling in both muscle and fat. FUNDING: This work was supported by a grant from the Independent Research Fund, Denmark (7016-00303A) and from the Alfred Benzon Foundation, Denmark.
format Online
Article
Text
id pubmed-8688588
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-86885882021-12-30 Reversible insulin resistance in muscle and fat unrelated to the metabolic syndrome in patients with acromegaly Arlien-Søborg, Mai C. Dal, Jakob Madsen, Michael Alle Høgild, Morten Lyng Hjelholt, Astrid Johannesson Pedersen, Steen B. Møller, Niels Jessen, Niels Jørgensen, Jens O.L. EBioMedicine Article BACKGROUND: Patients with active acromegaly exhibit insulin resistance despite a lean phenotype whereas controlled disease improves insulin sensitivity and increases fat mass. The mechanisms underlying this paradox remain elusive, but growth hormone (GH)-induced lipolysis plays a central role. The aim of the study was to investigative the molecular mechanisms of insulin resistance dissociated from obesity in patients with acromegaly. METHODS: In a prospective study, twenty-one patients with newly diagnosed acromegaly were studied at diagnosis and after disease control obtained by either surgery alone (n=10) or somatostatin analogue (SA) treatment (n=11) with assessment of body composition (DXA scan), whole body and tissue-specific insulin sensitivity and GH and insulin signalling in adipose tissue and skeletal muscle. FINDINGS: Disease control of acromegaly significantly reduced lean body mass (p<0.001) and increased fat mass (p<0.001). At diagnosis, GH signalling (pSTAT5) was constitutively activated in fat and enhanced expression of GH-regulated genes (CISH and IGF-I) were detected in muscle and fat. Insulin sensitivity in skeletal muscle, liver and adipose tissue increased after disease control regardless of treatment modality. This was associated with enhanced insulin signalling in both muscle and fat including downregulation of phosphatase and tensin homolog (PTEN) together with reduced signalling of GH and lipolytic activators in fat. INTERPRETATION: In conclusion, the study support that uncontrolled lipolysis is a major feature of insulin resistance in active acromegaly, and is characterized by upregulation of PTEN and suppression of insulin signalling in both muscle and fat. FUNDING: This work was supported by a grant from the Independent Research Fund, Denmark (7016-00303A) and from the Alfred Benzon Foundation, Denmark. Elsevier 2021-12-17 /pmc/articles/PMC8688588/ /pubmed/34929488 http://dx.doi.org/10.1016/j.ebiom.2021.103763 Text en © 2021 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
Arlien-Søborg, Mai C.
Dal, Jakob
Madsen, Michael Alle
Høgild, Morten Lyng
Hjelholt, Astrid Johannesson
Pedersen, Steen B.
Møller, Niels
Jessen, Niels
Jørgensen, Jens O.L.
Reversible insulin resistance in muscle and fat unrelated to the metabolic syndrome in patients with acromegaly
title Reversible insulin resistance in muscle and fat unrelated to the metabolic syndrome in patients with acromegaly
title_full Reversible insulin resistance in muscle and fat unrelated to the metabolic syndrome in patients with acromegaly
title_fullStr Reversible insulin resistance in muscle and fat unrelated to the metabolic syndrome in patients with acromegaly
title_full_unstemmed Reversible insulin resistance in muscle and fat unrelated to the metabolic syndrome in patients with acromegaly
title_short Reversible insulin resistance in muscle and fat unrelated to the metabolic syndrome in patients with acromegaly
title_sort reversible insulin resistance in muscle and fat unrelated to the metabolic syndrome in patients with acromegaly
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8688588/
https://www.ncbi.nlm.nih.gov/pubmed/34929488
http://dx.doi.org/10.1016/j.ebiom.2021.103763
work_keys_str_mv AT arliensøborgmaic reversibleinsulinresistanceinmuscleandfatunrelatedtothemetabolicsyndromeinpatientswithacromegaly
AT daljakob reversibleinsulinresistanceinmuscleandfatunrelatedtothemetabolicsyndromeinpatientswithacromegaly
AT madsenmichaelalle reversibleinsulinresistanceinmuscleandfatunrelatedtothemetabolicsyndromeinpatientswithacromegaly
AT høgildmortenlyng reversibleinsulinresistanceinmuscleandfatunrelatedtothemetabolicsyndromeinpatientswithacromegaly
AT hjelholtastridjohannesson reversibleinsulinresistanceinmuscleandfatunrelatedtothemetabolicsyndromeinpatientswithacromegaly
AT pedersensteenb reversibleinsulinresistanceinmuscleandfatunrelatedtothemetabolicsyndromeinpatientswithacromegaly
AT møllerniels reversibleinsulinresistanceinmuscleandfatunrelatedtothemetabolicsyndromeinpatientswithacromegaly
AT jessenniels reversibleinsulinresistanceinmuscleandfatunrelatedtothemetabolicsyndromeinpatientswithacromegaly
AT jørgensenjensol reversibleinsulinresistanceinmuscleandfatunrelatedtothemetabolicsyndromeinpatientswithacromegaly