Cargando…
MS-MDA: Multisource Marginal Distribution Adaptation for Cross-Subject and Cross-Session EEG Emotion Recognition
As an essential element for the diagnosis and rehabilitation of psychiatric disorders, the electroencephalogram (EEG) based emotion recognition has achieved significant progress due to its high precision and reliability. However, one obstacle to practicality lies in the variability between subjects...
Autores principales: | Chen, Hao, Jin, Ming, Li, Zhunan, Fan, Cunhang, Li, Jinpeng, He, Huiguang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8688841/ https://www.ncbi.nlm.nih.gov/pubmed/34949983 http://dx.doi.org/10.3389/fnins.2021.778488 |
Ejemplares similares
-
Exploring EEG Features in Cross-Subject Emotion Recognition
por: Li, Xiang, et al.
Publicado: (2018) -
Cross-Subject EEG Emotion Recognition With Self-Organized Graph Neural Network
por: Li, Jingcong, et al.
Publicado: (2021) -
Cross-Subject Emotion Recognition Using Fused Entropy Features of EEG
por: Zuo, Xin, et al.
Publicado: (2022) -
Hybrid transfer learning strategy for cross-subject EEG emotion recognition
por: Lu, Wei, et al.
Publicado: (2023) -
Multi-source joint domain adaptation for cross-subject and cross-session emotion recognition from electroencephalography
por: Liang, Shengjin, et al.
Publicado: (2022)