Cargando…
Establishment of a human induced pluripotent stem cell neuronal model for identification of modulators of A53T α-synuclein levels and aggregation
Inhibiting formation or promoting degradation of α-synuclein aggregates are among the therapeutical approaches under investigation as disease-modifying treatment strategies for Parkinson’s disease. To support these developments, several in vitro models based on seeded α-synuclein aggregation have be...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8691628/ https://www.ncbi.nlm.nih.gov/pubmed/34932569 http://dx.doi.org/10.1371/journal.pone.0261536 |
_version_ | 1784618802746490880 |
---|---|
author | Vajhøj, Charlotte Schmid, Benjamin Alik, Ania Melki, Ronald Fog, Karina Holst, Bjørn Stummann, Tina Charlotte |
author_facet | Vajhøj, Charlotte Schmid, Benjamin Alik, Ania Melki, Ronald Fog, Karina Holst, Bjørn Stummann, Tina Charlotte |
author_sort | Vajhøj, Charlotte |
collection | PubMed |
description | Inhibiting formation or promoting degradation of α-synuclein aggregates are among the therapeutical approaches under investigation as disease-modifying treatment strategies for Parkinson’s disease. To support these developments, several in vitro models based on seeded α-synuclein aggregation have been established in immortalized cell lines and murine primary neurons. Here, we report on a humanized model with a reproducibility and throughput that enables its use in supporting target identification and validation in pharmacological research. A human induced pluripotent stem cell (iPSC) line was genetically modified to express HA-tagged α-synuclein with the point mutation in position 53 from Alanine to Threonine (A53T) under an inducible system and differentiated into cortical neurons expressing neuronal markers and exhibiting spontaneous activity. Intracellular α-synuclein aggregation was triggered by exposure to exogenous added fibrillated recombinant wild-type human α-synuclein fibrils91 and demonstrated by several endpoints; the formation of Triton-insoluble SDS-soluble α-synuclein, biochemically in a fluorescence resonance energy transfer based aggregation assay and by immunocytochemistry of phosphorylated α-synuclein positive puncta. We demonstrate the feasibility of upscaling the iPSC neuron production for drug discovery and that the model has a suitable dynamic range allowing for both detection of increased and decreased α-synuclein aggregation. Moreover, gene modulation is feasible using siRNAs, making the model suitable for genetic screening for modulators of α-synuclein aggregation. Data on effects of USP8, USP13 and USP9X knockdown on α-synuclein expression and aggregation contradicts published data from immortalized cell lines and murine systems. This highlight the importance of including humanized neuronal models in the confirmation of biological mechanisms in specific variations of Parkinson’s disease. |
format | Online Article Text |
id | pubmed-8691628 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-86916282021-12-22 Establishment of a human induced pluripotent stem cell neuronal model for identification of modulators of A53T α-synuclein levels and aggregation Vajhøj, Charlotte Schmid, Benjamin Alik, Ania Melki, Ronald Fog, Karina Holst, Bjørn Stummann, Tina Charlotte PLoS One Research Article Inhibiting formation or promoting degradation of α-synuclein aggregates are among the therapeutical approaches under investigation as disease-modifying treatment strategies for Parkinson’s disease. To support these developments, several in vitro models based on seeded α-synuclein aggregation have been established in immortalized cell lines and murine primary neurons. Here, we report on a humanized model with a reproducibility and throughput that enables its use in supporting target identification and validation in pharmacological research. A human induced pluripotent stem cell (iPSC) line was genetically modified to express HA-tagged α-synuclein with the point mutation in position 53 from Alanine to Threonine (A53T) under an inducible system and differentiated into cortical neurons expressing neuronal markers and exhibiting spontaneous activity. Intracellular α-synuclein aggregation was triggered by exposure to exogenous added fibrillated recombinant wild-type human α-synuclein fibrils91 and demonstrated by several endpoints; the formation of Triton-insoluble SDS-soluble α-synuclein, biochemically in a fluorescence resonance energy transfer based aggregation assay and by immunocytochemistry of phosphorylated α-synuclein positive puncta. We demonstrate the feasibility of upscaling the iPSC neuron production for drug discovery and that the model has a suitable dynamic range allowing for both detection of increased and decreased α-synuclein aggregation. Moreover, gene modulation is feasible using siRNAs, making the model suitable for genetic screening for modulators of α-synuclein aggregation. Data on effects of USP8, USP13 and USP9X knockdown on α-synuclein expression and aggregation contradicts published data from immortalized cell lines and murine systems. This highlight the importance of including humanized neuronal models in the confirmation of biological mechanisms in specific variations of Parkinson’s disease. Public Library of Science 2021-12-21 /pmc/articles/PMC8691628/ /pubmed/34932569 http://dx.doi.org/10.1371/journal.pone.0261536 Text en © 2021 Vajhøj et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Vajhøj, Charlotte Schmid, Benjamin Alik, Ania Melki, Ronald Fog, Karina Holst, Bjørn Stummann, Tina Charlotte Establishment of a human induced pluripotent stem cell neuronal model for identification of modulators of A53T α-synuclein levels and aggregation |
title | Establishment of a human induced pluripotent stem cell neuronal model for identification of modulators of A53T α-synuclein levels and aggregation |
title_full | Establishment of a human induced pluripotent stem cell neuronal model for identification of modulators of A53T α-synuclein levels and aggregation |
title_fullStr | Establishment of a human induced pluripotent stem cell neuronal model for identification of modulators of A53T α-synuclein levels and aggregation |
title_full_unstemmed | Establishment of a human induced pluripotent stem cell neuronal model for identification of modulators of A53T α-synuclein levels and aggregation |
title_short | Establishment of a human induced pluripotent stem cell neuronal model for identification of modulators of A53T α-synuclein levels and aggregation |
title_sort | establishment of a human induced pluripotent stem cell neuronal model for identification of modulators of a53t α-synuclein levels and aggregation |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8691628/ https://www.ncbi.nlm.nih.gov/pubmed/34932569 http://dx.doi.org/10.1371/journal.pone.0261536 |
work_keys_str_mv | AT vajhøjcharlotte establishmentofahumaninducedpluripotentstemcellneuronalmodelforidentificationofmodulatorsofa53tasynucleinlevelsandaggregation AT schmidbenjamin establishmentofahumaninducedpluripotentstemcellneuronalmodelforidentificationofmodulatorsofa53tasynucleinlevelsandaggregation AT alikania establishmentofahumaninducedpluripotentstemcellneuronalmodelforidentificationofmodulatorsofa53tasynucleinlevelsandaggregation AT melkironald establishmentofahumaninducedpluripotentstemcellneuronalmodelforidentificationofmodulatorsofa53tasynucleinlevelsandaggregation AT fogkarina establishmentofahumaninducedpluripotentstemcellneuronalmodelforidentificationofmodulatorsofa53tasynucleinlevelsandaggregation AT holstbjørn establishmentofahumaninducedpluripotentstemcellneuronalmodelforidentificationofmodulatorsofa53tasynucleinlevelsandaggregation AT stummanntinacharlotte establishmentofahumaninducedpluripotentstemcellneuronalmodelforidentificationofmodulatorsofa53tasynucleinlevelsandaggregation |