Cargando…

Sarm1 haploinsufficiency or low expression levels after antisense oligonucleotides delay programmed axon degeneration

Activation of the pro-degenerative protein SARM1 after diverse physical and disease-relevant injuries causes programmed axon degeneration. Original studies indicate that substantially decreased SARM1 levels are required for neuroprotection. However, we demonstrate, in Sarm1 haploinsufficient mice, t...

Descripción completa

Detalles Bibliográficos
Autores principales: Gould, Stacey Anne, Gilley, Jonathan, Ling, Karen, Jafar-Nejad, Paymaan, Rigo, Frank, Coleman, Michael
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cell Press 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8692746/
https://www.ncbi.nlm.nih.gov/pubmed/34910914
http://dx.doi.org/10.1016/j.celrep.2021.110108
_version_ 1784619000653676544
author Gould, Stacey Anne
Gilley, Jonathan
Ling, Karen
Jafar-Nejad, Paymaan
Rigo, Frank
Coleman, Michael
author_facet Gould, Stacey Anne
Gilley, Jonathan
Ling, Karen
Jafar-Nejad, Paymaan
Rigo, Frank
Coleman, Michael
author_sort Gould, Stacey Anne
collection PubMed
description Activation of the pro-degenerative protein SARM1 after diverse physical and disease-relevant injuries causes programmed axon degeneration. Original studies indicate that substantially decreased SARM1 levels are required for neuroprotection. However, we demonstrate, in Sarm1 haploinsufficient mice, that lowering SARM1 levels by 50% delays programmed axon degeneration in vivo after sciatic nerve transection and partially prevents neurite outgrowth defects in mice lacking the pro-survival factor NMNAT2. In vitro, the rate of degeneration in response to traumatic, neurotoxic, and genetic triggers of SARM1 activation is also slowed. Finally, we demonstrate that Sarm1 antisense oligonucleotides decrease SARM1 levels by more than 50% in vitro, which delays or prevents programmed axon degeneration. Combining Sarm1 haploinsufficiency with antisense oligonucleotides further decreases SARM1 levels and prolongs protection after neurotoxic injury. These data demonstrate that axon protection occurs in a Sarm1 gene dose-responsive manner and that SARM1-lowering agents have therapeutic potential, making Sarm1-targeting antisense oligonucleotides a promising therapeutic strategy.
format Online
Article
Text
id pubmed-8692746
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Cell Press
record_format MEDLINE/PubMed
spelling pubmed-86927462022-01-03 Sarm1 haploinsufficiency or low expression levels after antisense oligonucleotides delay programmed axon degeneration Gould, Stacey Anne Gilley, Jonathan Ling, Karen Jafar-Nejad, Paymaan Rigo, Frank Coleman, Michael Cell Rep Article Activation of the pro-degenerative protein SARM1 after diverse physical and disease-relevant injuries causes programmed axon degeneration. Original studies indicate that substantially decreased SARM1 levels are required for neuroprotection. However, we demonstrate, in Sarm1 haploinsufficient mice, that lowering SARM1 levels by 50% delays programmed axon degeneration in vivo after sciatic nerve transection and partially prevents neurite outgrowth defects in mice lacking the pro-survival factor NMNAT2. In vitro, the rate of degeneration in response to traumatic, neurotoxic, and genetic triggers of SARM1 activation is also slowed. Finally, we demonstrate that Sarm1 antisense oligonucleotides decrease SARM1 levels by more than 50% in vitro, which delays or prevents programmed axon degeneration. Combining Sarm1 haploinsufficiency with antisense oligonucleotides further decreases SARM1 levels and prolongs protection after neurotoxic injury. These data demonstrate that axon protection occurs in a Sarm1 gene dose-responsive manner and that SARM1-lowering agents have therapeutic potential, making Sarm1-targeting antisense oligonucleotides a promising therapeutic strategy. Cell Press 2021-12-14 /pmc/articles/PMC8692746/ /pubmed/34910914 http://dx.doi.org/10.1016/j.celrep.2021.110108 Text en © 2021 The Authors https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Gould, Stacey Anne
Gilley, Jonathan
Ling, Karen
Jafar-Nejad, Paymaan
Rigo, Frank
Coleman, Michael
Sarm1 haploinsufficiency or low expression levels after antisense oligonucleotides delay programmed axon degeneration
title Sarm1 haploinsufficiency or low expression levels after antisense oligonucleotides delay programmed axon degeneration
title_full Sarm1 haploinsufficiency or low expression levels after antisense oligonucleotides delay programmed axon degeneration
title_fullStr Sarm1 haploinsufficiency or low expression levels after antisense oligonucleotides delay programmed axon degeneration
title_full_unstemmed Sarm1 haploinsufficiency or low expression levels after antisense oligonucleotides delay programmed axon degeneration
title_short Sarm1 haploinsufficiency or low expression levels after antisense oligonucleotides delay programmed axon degeneration
title_sort sarm1 haploinsufficiency or low expression levels after antisense oligonucleotides delay programmed axon degeneration
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8692746/
https://www.ncbi.nlm.nih.gov/pubmed/34910914
http://dx.doi.org/10.1016/j.celrep.2021.110108
work_keys_str_mv AT gouldstaceyanne sarm1haploinsufficiencyorlowexpressionlevelsafterantisenseoligonucleotidesdelayprogrammedaxondegeneration
AT gilleyjonathan sarm1haploinsufficiencyorlowexpressionlevelsafterantisenseoligonucleotidesdelayprogrammedaxondegeneration
AT lingkaren sarm1haploinsufficiencyorlowexpressionlevelsafterantisenseoligonucleotidesdelayprogrammedaxondegeneration
AT jafarnejadpaymaan sarm1haploinsufficiencyorlowexpressionlevelsafterantisenseoligonucleotidesdelayprogrammedaxondegeneration
AT rigofrank sarm1haploinsufficiencyorlowexpressionlevelsafterantisenseoligonucleotidesdelayprogrammedaxondegeneration
AT colemanmichael sarm1haploinsufficiencyorlowexpressionlevelsafterantisenseoligonucleotidesdelayprogrammedaxondegeneration