Cargando…

Modulation of H4K16Ac levels reduces pro-fibrotic gene expression and mitigates lung fibrosis in aged mice

Histone H4 lysine16 acetylation (H4K16Ac) modulates chromatin structure by serving as a switch from a repressive to a transcriptionally active state. This euchromatin mark is associated with active transcription. In this study, we investigated the effects of H4K16Ac on the expression of pro-fibrotic...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Xiangyu, Liu, Hui, Zhou, Jennifer Q, Krick, Stefanie, Barnes, Jarrod W, Thannickal, Victor J, Sanders, Yan Y
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Ivyspring International Publisher 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8692895/
https://www.ncbi.nlm.nih.gov/pubmed/34976199
http://dx.doi.org/10.7150/thno.62760
_version_ 1784619029610102784
author Zhang, Xiangyu
Liu, Hui
Zhou, Jennifer Q
Krick, Stefanie
Barnes, Jarrod W
Thannickal, Victor J
Sanders, Yan Y
author_facet Zhang, Xiangyu
Liu, Hui
Zhou, Jennifer Q
Krick, Stefanie
Barnes, Jarrod W
Thannickal, Victor J
Sanders, Yan Y
author_sort Zhang, Xiangyu
collection PubMed
description Histone H4 lysine16 acetylation (H4K16Ac) modulates chromatin structure by serving as a switch from a repressive to a transcriptionally active state. This euchromatin mark is associated with active transcription. In this study, we investigated the effects of H4K16Ac on the expression of pro-fibrotic genes in lung fibroblasts from patients with idiopathic pulmonary fibrosis (IPF) and in an aging murine model of lung fibrosis. Methods: The lung tissues and fibroblasts from human IPF/non-IPF donors and from aged mice with/without bleomycin induced lung fibrosis were used in this study. The H4K16Ac levels were examined by immunohistochemistry or western blots. RNA silencing of H4K16Ac acetyltransferase Mof was used to reduce H4K16Ac levels in IPF fibroblasts. The effects of reduced H4K16Ac on pro-fibrotic gene expression were examined by western blots and real-time PCR. The association of H4K16Ac with these genes' promoter region were evaluated by ChIP assays. The gene expression profile in siRNA Mof transfected IPF cells were determined by RNA-Seq. The impact of H4K16Ac levels on lung fibrosis was evaluated in an aging murine model. Results: Aged mice with bleomycin induced lung fibrosis showed increased H4K16Ac levels. Human lung fibroblasts with siRNA Mof silencing demonstrated reduced H4K16Ac, and significantly down-regulated profibrotic genes, such as α-smooth muscle actin (α-SMA), collagen I, Nox4, and survivin. ChIP assays confirmed the associations of these pro-fibrotic genes' promoter region with H4K16Ac, while in siRNA Mof transfected cells the promoter/H4K16Ac associations were depleted. RNA-seq data demonstrated that Mof knockdown altered gene expression and cellular pathways, including cell damage and repair. In the aging mice model of persistent lung fibrosis, 18-month old mice given intra-nasal siRNA Mof from week 3 to 6 following bleomycin injury showed improved lung architecture, decreased total hydroxyproline content and lower levels of H4K16Ac. Conclusions: These results indicate a critical epigenetic regulatory role for histone H4K16Ac in the pathogenesis of pulmonary fibrosis, which will aid in the development of novel therapeutic strategies for age-related diseases such as IPF.
format Online
Article
Text
id pubmed-8692895
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Ivyspring International Publisher
record_format MEDLINE/PubMed
spelling pubmed-86928952022-01-01 Modulation of H4K16Ac levels reduces pro-fibrotic gene expression and mitigates lung fibrosis in aged mice Zhang, Xiangyu Liu, Hui Zhou, Jennifer Q Krick, Stefanie Barnes, Jarrod W Thannickal, Victor J Sanders, Yan Y Theranostics Research Paper Histone H4 lysine16 acetylation (H4K16Ac) modulates chromatin structure by serving as a switch from a repressive to a transcriptionally active state. This euchromatin mark is associated with active transcription. In this study, we investigated the effects of H4K16Ac on the expression of pro-fibrotic genes in lung fibroblasts from patients with idiopathic pulmonary fibrosis (IPF) and in an aging murine model of lung fibrosis. Methods: The lung tissues and fibroblasts from human IPF/non-IPF donors and from aged mice with/without bleomycin induced lung fibrosis were used in this study. The H4K16Ac levels were examined by immunohistochemistry or western blots. RNA silencing of H4K16Ac acetyltransferase Mof was used to reduce H4K16Ac levels in IPF fibroblasts. The effects of reduced H4K16Ac on pro-fibrotic gene expression were examined by western blots and real-time PCR. The association of H4K16Ac with these genes' promoter region were evaluated by ChIP assays. The gene expression profile in siRNA Mof transfected IPF cells were determined by RNA-Seq. The impact of H4K16Ac levels on lung fibrosis was evaluated in an aging murine model. Results: Aged mice with bleomycin induced lung fibrosis showed increased H4K16Ac levels. Human lung fibroblasts with siRNA Mof silencing demonstrated reduced H4K16Ac, and significantly down-regulated profibrotic genes, such as α-smooth muscle actin (α-SMA), collagen I, Nox4, and survivin. ChIP assays confirmed the associations of these pro-fibrotic genes' promoter region with H4K16Ac, while in siRNA Mof transfected cells the promoter/H4K16Ac associations were depleted. RNA-seq data demonstrated that Mof knockdown altered gene expression and cellular pathways, including cell damage and repair. In the aging mice model of persistent lung fibrosis, 18-month old mice given intra-nasal siRNA Mof from week 3 to 6 following bleomycin injury showed improved lung architecture, decreased total hydroxyproline content and lower levels of H4K16Ac. Conclusions: These results indicate a critical epigenetic regulatory role for histone H4K16Ac in the pathogenesis of pulmonary fibrosis, which will aid in the development of novel therapeutic strategies for age-related diseases such as IPF. Ivyspring International Publisher 2022-01-01 /pmc/articles/PMC8692895/ /pubmed/34976199 http://dx.doi.org/10.7150/thno.62760 Text en © The author(s) https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions.
spellingShingle Research Paper
Zhang, Xiangyu
Liu, Hui
Zhou, Jennifer Q
Krick, Stefanie
Barnes, Jarrod W
Thannickal, Victor J
Sanders, Yan Y
Modulation of H4K16Ac levels reduces pro-fibrotic gene expression and mitigates lung fibrosis in aged mice
title Modulation of H4K16Ac levels reduces pro-fibrotic gene expression and mitigates lung fibrosis in aged mice
title_full Modulation of H4K16Ac levels reduces pro-fibrotic gene expression and mitigates lung fibrosis in aged mice
title_fullStr Modulation of H4K16Ac levels reduces pro-fibrotic gene expression and mitigates lung fibrosis in aged mice
title_full_unstemmed Modulation of H4K16Ac levels reduces pro-fibrotic gene expression and mitigates lung fibrosis in aged mice
title_short Modulation of H4K16Ac levels reduces pro-fibrotic gene expression and mitigates lung fibrosis in aged mice
title_sort modulation of h4k16ac levels reduces pro-fibrotic gene expression and mitigates lung fibrosis in aged mice
topic Research Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8692895/
https://www.ncbi.nlm.nih.gov/pubmed/34976199
http://dx.doi.org/10.7150/thno.62760
work_keys_str_mv AT zhangxiangyu modulationofh4k16aclevelsreducesprofibroticgeneexpressionandmitigateslungfibrosisinagedmice
AT liuhui modulationofh4k16aclevelsreducesprofibroticgeneexpressionandmitigateslungfibrosisinagedmice
AT zhoujenniferq modulationofh4k16aclevelsreducesprofibroticgeneexpressionandmitigateslungfibrosisinagedmice
AT krickstefanie modulationofh4k16aclevelsreducesprofibroticgeneexpressionandmitigateslungfibrosisinagedmice
AT barnesjarrodw modulationofh4k16aclevelsreducesprofibroticgeneexpressionandmitigateslungfibrosisinagedmice
AT thannickalvictorj modulationofh4k16aclevelsreducesprofibroticgeneexpressionandmitigateslungfibrosisinagedmice
AT sandersyany modulationofh4k16aclevelsreducesprofibroticgeneexpressionandmitigateslungfibrosisinagedmice