Cargando…
Polymorphisms of SORBS1 Gene and Their Correlation with Milk Fat Traits of Cattleyak
SIMPLE SUMMARY: Increasing milk fat rate has a good effect on the milk quality of cattleyak. SNPs can help us find potential molecular markers for the milk fat traits of cattleyak, and they can be screened according to molecular markers when they are young. It provides a reference for cultivating hi...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8697865/ https://www.ncbi.nlm.nih.gov/pubmed/34944239 http://dx.doi.org/10.3390/ani11123461 |
Sumario: | SIMPLE SUMMARY: Increasing milk fat rate has a good effect on the milk quality of cattleyak. SNPs can help us find potential molecular markers for the milk fat traits of cattleyak, and they can be screened according to molecular markers when they are young. It provides a reference for cultivating high milk fat cattle population in the future. The results of this study suggest that the SORBS1 gene polymorphism is closely related to the milk fat traits of cattleyak, which could be used as a candidate genetic marker for milk fat trait selection in cattleyak. This study provides a new molecular marker and theoretical basis for screening the milk fat traits of cattleyak. It has a certain reference value for the research and improvement of milk quality. ABSTRACT: This study aimed to find the SNPs in the SORBS1 gene of cattleyak, analyze the relationship between its polymorphisms and the milk fat traits, and find potential molecular markers for the milk fat traits of cattleyak. The polymorphism of the SORBS1 gene in 350 cattleyak from Hongyuan County (Sichuan, China) were detected by PCR and DNA sequencing, and the correlation between these SNPs and the milk production traits of cattleyak was analyzed. The results showed that there were nine SNPs in the CDS and their adjacent non-coding regions of the SORBS1 gene, and all SNPs have three genotypes. The correlation analysis found that the genotypes with superior milk fat traits in the other eight alleles were homozygous genotypes with a high genotype frequency except the g.96284 G > A (c.3090 G > A) (p < 0.05). However, at locus g.96284 G > A, the milk fat percentage, monounsaturated fatty acids (MUFAs), polyunsaturated fatty acids (PUFAs) and saturated fatty acids (SFAs) of the GA genotype were significantly higher than that of GG and AA genotypes (p < 0.05). Among these SNPs, three SNPs (g.6256 C > T (c.298 C > T), g.24791 A > G (c.706 A > G) and g.29121 A > G (c.979 A > G)) caused the amino acids change. The genotypes of the three SNPs consist of three haplotypes and four diplotypes. The amino acid mutation degree of diplotype H1–H1 (CCAAAA) was the highest, and its milk fat percentage, MUFAs, PUFAs and SFAs were also the highest (p < 0.05). Taken together, we found nine SNPs in the SORBS1 gene that are closely related to the milk fat traits of cattleyak. Moreover, the mutation of amino acids caused by SNPs had positive effects on the milk fat traits of cattleyak. H1-H1 is the dominant diplotype which significantly related to the milk fat traits of cattleyak. This study provides a new molecular marker and theoretical basis for screening the milk fat traits of cattleyak. |
---|