Cargando…

Successful Inclusion of High Vegetable Protein Sources in Feed for Rainbow Trout without Decrement in Intestinal Health

SIMPLE SUMMARY: A reduction in fishmeal in diets is essential to achieve the aim of sustainable production. In the current work, using a plant protein blend of wheat gluten, wheat and soybean meal supplemented with Tau, Val, Lys and Met, a 10% higher fishmeal substitution without affecting growth an...

Descripción completa

Detalles Bibliográficos
Autores principales: Vélez-Calabria, Glenda, Peñaranda, David Sánchez, Jover-Cerdá, Miguel, Llorens, Silvia Martínez, Tomás-Vidal, Ana
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8698200/
https://www.ncbi.nlm.nih.gov/pubmed/34944352
http://dx.doi.org/10.3390/ani11123577
Descripción
Sumario:SIMPLE SUMMARY: A reduction in fishmeal in diets is essential to achieve the aim of sustainable production. In the current work, using a plant protein blend of wheat gluten, wheat and soybean meal supplemented with Tau, Val, Lys and Met, a 10% higher fishmeal substitution without affecting growth and health parameters has been accomplished. ABSTRACT: The aquaculture of carnivorous fish is in continuous expansion, which leads to the need to reduce the dependence on fishmeal (FM). Plant proteins (PP) represent a suitable protein alternative to FM and are increasingly used in fish feed. However, PP may lead to stunted growth and enteritis. In the current study, the effect of high FM substitution by PP sources on the growth, mortality and intestinal health of rainbow trout (Oncorhynchus mykiss) was evaluated in terms of the histological intestine parameters and expression of genes related to inflammation (IL-1β, IL-8 and TGF-β) and immune responses (Transferrin, IgT and IFN-γ). The results show that a total substitution registered lower growth and survival rates, probably due to a disruption to the animal’s health. Confirming this hypothesis, fish fed FM0 showed histological changes in the intestine and gene changes related to inflammatory responses, which in the long-term could have triggered an immunosuppression. The FM10 diet presented not only a similar expression to FM20 (control diet), but also similar growth and survival. Therefore, 90% of FM substitution was demonstrated as being feasible in this species using a PP blend of wheat gluten (WG) and soybean meal (SBM) as a protein source.