Cargando…

Production of d-Tagatose by Whole-Cell Conversion of Recombinant Bacillus subtilis in the Absence of Antibiotics

SIMPLE SUMMARY: d-tagatose is a valuable monosaccharide in the food industry produced from lactose by β-galactosidase and arabinose isomerase. To improve its production safety, d-alanine-deficient heterologous gene expression systems were constructed without antibiotics. The integrated expression an...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Xian, Lu, Ruiqi, Wang, Qiang, Hu, Mengkai, Li, Zhiyue, Xu, Meijuan, Yang, Taowei, Zhang, Rongzhen, Rao, Zhiming
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8698901/
https://www.ncbi.nlm.nih.gov/pubmed/34943259
http://dx.doi.org/10.3390/biology10121343
Descripción
Sumario:SIMPLE SUMMARY: d-tagatose is a valuable monosaccharide in the food industry produced from lactose by β-galactosidase and arabinose isomerase. To improve its production safety, d-alanine-deficient heterologous gene expression systems were constructed without antibiotics. The integrated expression and co-expression plasmids were used in different systems, also exploiting the need for d-alanine during cellular metabolism. The integration of the β-galactosidase gene in recombinant is uniquely innovative and promising, applying common knockout techniques to the expression of target genes and the production of high-value products. ABSTRACT: d-tagatose is a popular functional monosaccharide produced from lactose by β-galactosidase and arabinose isomerase. In this study, two d-alanine-deficient heterologous gene expression systems were constructed, B. subtilis 168 D1 and B. subtilis 168 D2, using overlapping extension PCR and the CRE/loxP system. The lacZ gene for β-galactosidase was integrated into a specific locus of the chassis B. subtilis 168 D2. A mutually complementary plasmid pMA5 with the alanine racemase gene alrA attached to it was constructed and used to assemble recombinant plasmids overexpressing β-galactosidase and arabinose isomerase. Afterward, an integrated recombinant was constructed by the plasmid expressing the arabinose isomerase gene araA of E. coli transform-competent B. subtilis 168 D2 cells. The co-expressing plasmids were introduced into alanine racemase knockout B. subtilis 168 D1. Whole-cell bioconversion was performed using the integrated recombinant with a maximum yield of 96.8 g/L d-tagatose from 500 g/L lactose, and the highest molar conversions were 57.2%. B. subtilis 168 D1/pMA5-alrA-araA-lacZ is capable of single-cell one-step production of d-tagatose. This study provides a new approach to the production of functional sugars.